Spaces:
Running
Running
import torch | |
from synthesizer import audio | |
from synthesizer.hparams import hparams | |
from synthesizer.models.tacotron import Tacotron | |
from synthesizer.utils.symbols import symbols | |
from synthesizer.utils.text import text_to_sequence | |
from vocoder.display import simple_table | |
from pathlib import Path | |
from typing import Union, List | |
import numpy as np | |
import librosa | |
class Synthesizer: | |
sample_rate = hparams.sample_rate | |
hparams = hparams | |
def __init__(self, model_fpath: Path, verbose=True): | |
""" | |
The model isn't instantiated and loaded in memory until needed or until load() is called. | |
:param model_fpath: path to the trained model file | |
:param verbose: if False, prints less information when using the model | |
""" | |
self.model_fpath = model_fpath | |
self.verbose = verbose | |
# Check for GPU | |
if torch.cuda.is_available(): | |
self.device = torch.device("cuda") | |
else: | |
self.device = torch.device("cpu") | |
if self.verbose: | |
print("Synthesizer using device:", self.device) | |
# Tacotron model will be instantiated later on first use. | |
self._model = None | |
def is_loaded(self): | |
""" | |
Whether the model is loaded in memory. | |
""" | |
return self._model is not None | |
def load(self): | |
""" | |
Instantiates and loads the model given the weights file that was passed in the constructor. | |
""" | |
self._model = Tacotron(embed_dims=hparams.tts_embed_dims, | |
num_chars=len(symbols), | |
encoder_dims=hparams.tts_encoder_dims, | |
decoder_dims=hparams.tts_decoder_dims, | |
n_mels=hparams.num_mels, | |
fft_bins=hparams.num_mels, | |
postnet_dims=hparams.tts_postnet_dims, | |
encoder_K=hparams.tts_encoder_K, | |
lstm_dims=hparams.tts_lstm_dims, | |
postnet_K=hparams.tts_postnet_K, | |
num_highways=hparams.tts_num_highways, | |
dropout=hparams.tts_dropout, | |
stop_threshold=hparams.tts_stop_threshold, | |
speaker_embedding_size=hparams.speaker_embedding_size).to(self.device) | |
self._model.load(self.model_fpath) | |
self._model.eval() | |
if self.verbose: | |
print("Loaded synthesizer \"%s\" trained to step %d" % (self.model_fpath.name, self._model.state_dict()["step"])) | |
def synthesize_spectrograms(self, texts: List[str], | |
embeddings: Union[np.ndarray, List[np.ndarray]], | |
return_alignments=False): | |
""" | |
Synthesizes mel spectrograms from texts and speaker embeddings. | |
:param texts: a list of N text prompts to be synthesized | |
:param embeddings: a numpy array or list of speaker embeddings of shape (N, 256) | |
:param return_alignments: if True, a matrix representing the alignments between the | |
characters | |
and each decoder output step will be returned for each spectrogram | |
:return: a list of N melspectrograms as numpy arrays of shape (80, Mi), where Mi is the | |
sequence length of spectrogram i, and possibly the alignments. | |
""" | |
# Load the model on the first request. | |
if not self.is_loaded(): | |
self.load() | |
# Preprocess text inputs | |
inputs = [text_to_sequence(text.strip(), hparams.tts_cleaner_names) for text in texts] | |
if not isinstance(embeddings, list): | |
embeddings = [embeddings] | |
# Batch inputs | |
batched_inputs = [inputs[i:i+hparams.synthesis_batch_size] | |
for i in range(0, len(inputs), hparams.synthesis_batch_size)] | |
batched_embeds = [embeddings[i:i+hparams.synthesis_batch_size] | |
for i in range(0, len(embeddings), hparams.synthesis_batch_size)] | |
specs = [] | |
for i, batch in enumerate(batched_inputs, 1): | |
if self.verbose: | |
print(f"\n| Generating {i}/{len(batched_inputs)}") | |
# Pad texts so they are all the same length | |
text_lens = [len(text) for text in batch] | |
max_text_len = max(text_lens) | |
chars = [pad1d(text, max_text_len) for text in batch] | |
chars = np.stack(chars) | |
# Stack speaker embeddings into 2D array for batch processing | |
speaker_embeds = np.stack(batched_embeds[i-1]) | |
# Convert to tensor | |
chars = torch.tensor(chars).long().to(self.device) | |
speaker_embeddings = torch.tensor(speaker_embeds).float().to(self.device) | |
# Inference | |
_, mels, alignments = self._model.generate(chars, speaker_embeddings) | |
mels = mels.detach().cpu().numpy() | |
for m in mels: | |
# Trim silence from end of each spectrogram | |
while np.max(m[:, -1]) < hparams.tts_stop_threshold: | |
m = m[:, :-1] | |
specs.append(m) | |
if self.verbose: | |
print("\n\nDone.\n") | |
return (specs, alignments) if return_alignments else specs | |
def load_preprocess_wav(fpath): | |
""" | |
Loads and preprocesses an audio file under the same conditions the audio files were used to | |
train the synthesizer. | |
""" | |
print("Loading fpath and hparams.sample_rate :",str(fpath), hparams.sample_rate) | |
wav = librosa.load(str(fpath), hparams.sample_rate)[0] | |
if hparams.rescale: | |
wav = wav / np.abs(wav).max() * hparams.rescaling_max | |
return wav | |
def make_spectrogram(fpath_or_wav: Union[str, Path, np.ndarray]): | |
""" | |
Creates a mel spectrogram from an audio file in the same manner as the mel spectrograms that | |
were fed to the synthesizer when training. | |
""" | |
if isinstance(fpath_or_wav, str) or isinstance(fpath_or_wav, Path): | |
wav = Synthesizer.load_preprocess_wav(fpath_or_wav) | |
else: | |
wav = fpath_or_wav | |
mel_spectrogram = audio.melspectrogram(wav, hparams).astype(np.float32) | |
return mel_spectrogram | |
def griffin_lim(mel): | |
""" | |
Inverts a mel spectrogram using Griffin-Lim. The mel spectrogram is expected to have been built | |
with the same parameters present in hparams.py. | |
""" | |
return audio.inv_mel_spectrogram(mel, hparams) | |
def pad1d(x, max_len, pad_value=0): | |
return np.pad(x, (0, max_len - len(x)), mode="constant", constant_values=pad_value) | |