ruslanmv's picture
updates
98605c5
raw
history blame
3.64 kB
# backend.py
import torch
from diffusers import (
DiffusionPipeline,
AutoencoderTiny,
AutoencoderKL,
AutoPipelineForImage2Image,
)
from flux_app.config import DTYPE, DEVICE, BASE_MODEL, TAEF1_MODEL, MAX_SEED # Absolute import
from flux_app.utilities import calculate_shift, retrieve_timesteps, load_image_from_path, calculateDuration # Absolute import
from flux_app.lora_handling import flux_pipe_call_that_returns_an_iterable_of_images # Absolute import
import time
from huggingface_hub import login
class ModelManager:
def __init__(self, hf_token=None):
self.pipe = None
self.pipe_i2i = None
self.good_vae = None
self.taef1 = None
if hf_token:
login(token=hf_token) # Log in with the provided token
#else: # Optional: You could add a fallback to interactive login
# login()
self.initialize_models()
def initialize_models(self):
"""Initializes the diffusion pipelines and autoencoders."""
self.taef1 = AutoencoderTiny.from_pretrained(TAEF1_MODEL, torch_dtype=DTYPE, token=True).to(DEVICE)
self.good_vae = AutoencoderKL.from_pretrained(BASE_MODEL, subfolder="vae", torch_dtype=DTYPE, token=True).to(DEVICE)
self.pipe = DiffusionPipeline.from_pretrained(BASE_MODEL, torch_dtype=DTYPE, vae=self.taef1, token=True).to(DEVICE)
self.pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
BASE_MODEL,
vae=self.good_vae,
transformer=self.pipe.transformer,
text_encoder=self.pipe.text_encoder,
tokenizer=self.pipe.tokenizer,
text_encoder_2=self.pipe.text_encoder_2,
tokenizer_2=self.pipe.tokenizer_2,
torch_dtype=DTYPE,
token=True
)
self.pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(self.pipe)
def generate_image(self, prompt_mash, steps, seed, cfg_scale, width, height, lora_scale):
"""Generates an image using the text-to-image pipeline."""
self.pipe.to(DEVICE)
generator = torch.Generator(device=DEVICE).manual_seed(seed)
with calculateDuration("Generating image"):
for img in self.pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt_mash,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
output_type="pil",
good_vae=self.good_vae,
):
yield img
def generate_image_to_image(self, prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed):
"""Generates an image using the image-to-image pipeline."""
generator = torch.Generator(device=DEVICE).manual_seed(seed)
self.pipe_i2i.to(DEVICE)
image_input = load_image_from_path(image_input_path)
with calculateDuration("Generating image to image"):
final_image = self.pipe_i2i(
prompt=prompt_mash,
image=image_input,
strength=image_strength,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
output_type="pil",
).images[0]
return final_image