Spaces:
Sleeping
Sleeping
File size: 11,497 Bytes
fa78257 3dc3966 fa78257 f89d8b2 8aba6d1 3dc3966 bb01eaa 3dc3966 fa78257 8aba6d1 fa78257 8aba6d1 0120475 8aba6d1 fa78257 f89d8b2 fa78257 f89d8b2 fa78257 8aba6d1 fa78257 8aba6d1 0120475 fa78257 0120475 fa78257 0120475 8aba6d1 0120475 8aba6d1 0120475 8aba6d1 6ede1b7 8aba6d1 0120475 8aba6d1 0120475 8aba6d1 0120475 b501b77 0120475 b501b77 8aba6d1 fa78257 3dc3966 fa78257 3dc3966 fa78257 3dc3966 fa78257 3dc3966 fa78257 72953cd 3067e7b 8aba6d1 0120475 8aba6d1 b501b77 8aba6d1 b501b77 8aba6d1 b501b77 8aba6d1 ffed90e b501b77 ffed90e 8aba6d1 b501b77 8aba6d1 3dc3966 fa78257 8aba6d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import os
import pickle as pkl
from pathlib import Path
from threading import Thread
from typing import List, Tuple, Iterator
from queue import Queue
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """
<h1>Llama-2 7B Chat with Uncertainty Probes</h1>
<p>This Space demonstrates the Llama-2-7b-chat model with a semantic uncertainty probe.</p>
<p>The highlighted text shows the model's uncertainty in real-time:</p>
<ul>
<li><span style="background-color: #00FF00; color: black">Green</span> indicates more certain generations</li>
<li><span style="background-color: #FF0000; color: black">Red</span> indicates more uncertain generations</li>
</ul>
"""
EXAMPLES = [
["What is the capital of France?", ""],
["Who landed on the moon?", ""],
["Who is Yarin Gal?", ""],
["Explain the theory of relativity in simple terms.", ""],
]
if torch.cuda.is_available():
model_id = "meta-llama/Llama-2-7b-chat-hf"
# TODO load the full model not the 8bit one?
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
# load the probe data
# TODO compare accuracy and SE probe in different tabs/sections
with open("./model/20240625-131035_demo.pkl", "rb") as f:
probe_data = pkl.load(f)
# take the NQ open one
probe_data = probe_data[-2]
se_probe = probe_data['t_bmodel']
se_layer_range = probe_data['sep_layer_range']
acc_probe = probe_data['t_amodel']
acc_layer_range = probe_data['ap_layer_range']
else:
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
class CustomStreamer(TextIteratorStreamer):
"""
Streamer to also store hidden states in a queue.
TODO check this works
"""
def __init__(self, tokenizer, skip_prompt: bool = False, skip_special_tokens: bool = False, **decode_kwargs):
super().__init__(tokenizer, skip_prompt, skip_special_tokens, **decode_kwargs)
self.hidden_states_queue = Queue()
def put(self, value):
if isinstance(value, dict) and 'hidden_states' in value:
self.hidden_states_queue.put(value['hidden_states'])
super().put(value)
# Streamer claude
# def generate(
# message: str,
# system_prompt: str,
# chat_history: List[Tuple[str, str]],
# max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
# temperature: float = 0.6,
# top_p: float = 0.9,
# top_k: int = 50,
# repetition_penalty: float = 1.2,
# ) -> Iterator[Tuple[str, str]]:
# conversation = []
# if system_prompt:
# conversation.append({"role": "system", "content": system_prompt})
# for user, assistant in chat_history:
# conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
# conversation.append({"role": "user", "content": message})
# input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
# if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
# input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
# gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
# input_ids = input_ids.to(model.device)
@spaces.GPU
def generate(
message: str,
system_prompt: str,
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
# streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
streamer = CustomStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=repetition_penalty,
streamer=streamer,
output_hidden_states=True,
return_dict_in_generate=True,
)
# with threading
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
se_highlighted_text = ""
acc_highlighted_text = ""
for new_text in streamer:
hidden_states = streamer.hidden_states_queue.get()
# Semantic Uncertainty Probe
token_embeddings = torch.stack([generated_token[0, 0, :].cpu() for generated_token in hidden_states]).numpy() # (num_layers, hidden_size)
se_concat_layers = token_embeddings[se_layer_range[0]:se_layer_range[1]].reshape(-1)
se_probe_pred = se_probe.predict_proba(se_concat_layers.reshape(1, -1))[0][1] * 2 - 1
# Accuracy Probe
acc_concat_layers = token_embeddings[acc_layer_range[0]:acc_layer_range[1]].reshape(-1)
acc_probe_pred = (1 - acc_probe.predict_proba(acc_concat_layers.reshape(1, -1))[0][1]) * 2 - 1
print(new_text, se_probe_pred, acc_probe_pred)
se_new_highlighted_text = highlight_text(new_text, se_probe_pred)
acc_new_highlighted_text = highlight_text(new_text, acc_probe_pred)
se_highlighted_text += f" {se_new_highlighted_text}"
acc_highlighted_text += f" {acc_new_highlighted_text}"
yield se_highlighted_text, acc_highlighted_text
# Semantic Uncertainty Probe
# se_token_embeddings = torch.stack([layer[0, -1, :].cpu() for layer in hidden_states])
# se_concat_layers = se_token_embeddings.numpy()[se_layer_range[0]:se_layer_range[1]].reshape(-1)
# se_probe_pred = se_probe.predict_proba(se_concat_layers.reshape(1, -1))[0][1] * 2 - 1
# # Accuracy Probe
# acc_token_embeddings = torch.stack([layer[0, -1, :].cpu() for layer in hidden_states])
# acc_concat_layers = acc_token_embeddings.numpy()[acc_layer_range[0]:acc_layer_range[1]].reshape(-1)
# acc_probe_pred = acc_probe.predict_proba(acc_concat_layers.reshape(1, -1))[0][1] * 2 - 1
# se_new_highlighted_text = highlight_text(new_text, se_probe_pred)
# acc_new_highlighted_text = highlight_text(new_text, acc_probe_pred)
# se_highlighted_text += se_new_highlighted_text
# acc_highlighted_text += acc_new_highlighted_text
# yield se_highlighted_text, acc_highlighted_text
# Generate without threading
# with torch.no_grad():
# outputs = model.generate(**generation_kwargs)
# generated_tokens = outputs.sequences[0, input_ids.shape[1]:]
# generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
# # hidden states
# hidden = outputs.hidden_states # list of tensors, one for each token, then (batch size, sequence length, hidden size)
# # TODO do this loop on the fly instead of waiting for the whole generation
# se_highlighted_text = ""
# acc_highlighted_text = ""
# for i in range(1, len(hidden)):
# # Semantic Uncertainty Probe
# token_embeddings = torch.stack([generated_token[0, 0, :].cpu() for generated_token in hidden[i]]).numpy() # (num_layers, hidden_size)
# se_concat_layers = token_embeddings[se_layer_range[0]:se_layer_range[1]].reshape(-1)
# se_probe_pred = se_probe.predict_proba(se_concat_layers.reshape(1, -1))[0][1] * 2 - 1
# # Accuracy Probe
# # acc_token_embeddings = torch.stack([layer[0, -1, :].cpu() for layer in hidden_states])
# acc_concat_layers = token_embeddings[acc_layer_range[0]:acc_layer_range[1]].reshape(-1)
# acc_probe_pred = (1 - acc_probe.predict_proba(acc_concat_layers.reshape(1, -1))[0][1]) * 2 - 1
# output_id = outputs.sequences[0, input_ids.shape[1]+i]
# output_word = tokenizer.decode(output_id)
# print(output_id, output_word, se_probe_pred, acc_probe_pred)
# se_new_highlighted_text = highlight_text(output_word, se_probe_pred)
# acc_new_highlighted_text = highlight_text(output_word, acc_probe_pred)
# se_highlighted_text += f" {se_new_highlighted_text}"
# acc_highlighted_text += f" {acc_new_highlighted_text}"
# # yield se_highlighted_text, acc_highlighted_text
# return se_highlighted_text, acc_highlighted_text
def highlight_text(text: str, uncertainty_score: float) -> str:
if uncertainty_score > 0:
html_color = "#%02X%02X%02X" % (
255,
int(255 * (1 - uncertainty_score)),
int(255 * (1 - uncertainty_score)),
)
else:
html_color = "#%02X%02X%02X" % (
int(255 * (1 + uncertainty_score)),
255,
int(255 * (1 + uncertainty_score)),
)
return '<span style="background-color: {}; color: black">{}</span>'.format(
html_color, text
)
with gr.Blocks(title="Llama-2 7B Chat with Dual Probes", css="footer {visibility: hidden}") as demo:
gr.HTML(DESCRIPTION)
with gr.Row():
with gr.Column():
message = gr.Textbox(label="Message")
system_prompt = gr.Textbox(label="System prompt", lines=2)
with gr.Column():
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.01, maximum=2.0, step=0.1, value=0.01)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Row():
generate_btn = gr.Button("Generate")
# Add spacing between probes
gr.HTML("<br><br>")
with gr.Row():
with gr.Column():
# make a box
title = gr.HTML("<h2>Semantic Uncertainty Probe</h2>")
se_output = gr.HTML(label="Semantic Uncertainty Probe")
# Add spacing between columns
gr.HTML("<div style='width: 20px;'></div>")
with gr.Column():
title = gr.HTML("<h2>Accuracy Probe</h2>")
acc_output = gr.HTML(label="Accuracy Probe")
gr.Examples(
examples=EXAMPLES,
inputs=[message, system_prompt],
outputs=[se_output, acc_output],
fn=generate,
)
generate_btn.click(
generate,
inputs=[message, system_prompt, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[se_output, acc_output]
)
if __name__ == "__main__":
demo.launch() |