File size: 12,421 Bytes
fa78257
 
3dc3966
fa78257
f89d8b2
8aba6d1
3dc3966
bb01eaa
3dc3966
 
fa78257
 
 
 
 
 
 
8aba6d1
 
 
 
 
 
 
 
fa78257
 
8aba6d1
 
 
 
 
 
fa78257
 
f89d8b2
fa78257
 
 
 
 
f89d8b2
fa78257
 
 
 
8aba6d1
 
fa78257
 
8aba6d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa78257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aba6d1
 
fa78257
8aba6d1
 
 
 
 
 
 
 
 
 
 
fa78257
 
8aba6d1
 
 
 
 
 
 
 
 
fa78257
 
 
3dc3966
 
fa78257
 
3dc3966
 
 
fa78257
3dc3966
fa78257
3dc3966
 
fa78257
72953cd
3067e7b
8aba6d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3067e7b
3dc3966
fa78257
8aba6d1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import os
import pickle as pkl
from pathlib import Path
from threading import Thread
from typing import List, Tuple, Iterator
from queue import Queue

import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer


MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

DESCRIPTION = """
<h1>Llama-2 7B Chat with Uncertainty Probes</h1>
<p>This Space demonstrates the Llama-2-7b-chat model with a semantic uncertainty probe.</p>
<p>The highlighted text shows the model's uncertainty in real-time:</p>
<ul>
    <li><span style="background-color: #00FF00; color: black">Green</span> indicates more certain generations</li>
    <li><span style="background-color: #FF0000; color: black">Red</span> indicates more uncertain generations</li>
</ul>
"""

EXAMPLES = [
    ["What is the capital of France?", "You are a helpful assistant.", []],
    ["Explain the theory of relativity in simple terms.", "You are an expert physicist explaining concepts to a layman.", []],
    ["Write a short poem about artificial intelligence.", "You are a creative poet with a interest in technology.", []]
]

if torch.cuda.is_available():
    model_id = "meta-llama/Llama-2-7b-chat-hf"
    # TODO load the full model not the 8bit one?
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_8bit=True)
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    tokenizer.use_default_system_prompt = False

    # load the probe data
    # TODO compare accuracy and SE probe in different tabs/sections
    with open("./model/20240625-131035_demo.pkl", "rb") as f:
        probe_data = pkl.load(f)
    # take the NQ open one
    probe_data = probe_data[-2]
    se_probe = probe_data['t_bmodel']
    se_layer_range = probe_data['sep_layer_range']
    acc_probe = probe_data['t_amodel']
    acc_layer_range = probe_data['ap_layer_range']
else:
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"


class CustomStreamer(TextIteratorStreamer):
    """
    Streamer to also store hidden states in a queue.
    TODO check this works
    """
    def __init__(self, tokenizer, skip_prompt: bool = False, skip_special_tokens: bool = False, **decode_kwargs):
        super().__init__(tokenizer, skip_prompt, skip_special_tokens, **decode_kwargs)
        self.hidden_states_queue = Queue()

    def put(self, value):
        if isinstance(value, dict) and 'hidden_states' in value:
            self.hidden_states_queue.put(value['hidden_states'])
        super().put(value)

# Streamer claude
# def generate(
#     message: str,
#     system_prompt: str,
#     chat_history: List[Tuple[str, str]],
#     max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
#     temperature: float = 0.6,
#     top_p: float = 0.9,
#     top_k: int = 50,
#     repetition_penalty: float = 1.2,
# ) -> Iterator[Tuple[str, str]]:
#     conversation = []
#     if system_prompt:
#         conversation.append({"role": "system", "content": system_prompt})
#     for user, assistant in chat_history:
#         conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
#     conversation.append({"role": "user", "content": message})

#     input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
#     if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
#         input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
#         gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
#     input_ids = input_ids.to(model.device)

#     streamer = CustomStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
#     generation_kwargs = dict(
#         input_ids=input_ids,
#         max_new_tokens=max_new_tokens,
#         do_sample=True,
#         top_p=top_p,
#         top_k=top_k,
#         temperature=temperature,
#         repetition_penalty=repetition_penalty,
#         streamer=streamer,
#         output_hidden_states=True,
#         return_dict_in_generate=True,
#     )

#     thread = Thread(target=model.generate, kwargs=generation_kwargs)
#     thread.start()

#     se_highlighted_text = ""
#     acc_highlighted_text = ""
#     for new_text in streamer:
#         hidden_states = streamer.hidden_states_queue.get()
        
#         # Semantic Uncertainty Probe
#         se_token_embeddings = torch.stack([layer[0, -1, :].cpu() for layer in hidden_states])
#         se_concat_layers = se_token_embeddings.numpy()[se_layer_range[0]:se_layer_range[1]].reshape(-1)
#         se_probe_pred = se_probe.predict_proba(se_concat_layers.reshape(1, -1))[0][1] * 2 - 1
        
#         # Accuracy Probe
#         acc_token_embeddings = torch.stack([layer[0, -1, :].cpu() for layer in hidden_states])
#         acc_concat_layers = acc_token_embeddings.numpy()[acc_layer_range[0]:acc_layer_range[1]].reshape(-1)
#         acc_probe_pred = acc_probe.predict_proba(acc_concat_layers.reshape(1, -1))[0][1] * 2 - 1
        
#         se_new_highlighted_text = highlight_text(new_text, se_probe_pred)
#         acc_new_highlighted_text = highlight_text(new_text, acc_probe_pred)
        
#         se_highlighted_text += se_new_highlighted_text
#         acc_highlighted_text += acc_new_highlighted_text
        
#         yield se_highlighted_text, acc_highlighted_text

@spaces.GPU
def generate(
    message: str,
    chat_history: List[Tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = dict(
        input_ids=input_ids,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        repetition_penalty=repetition_penalty,
        streamer=streamer,
        output_hidden_states=True,
        return_dict_in_generate=True,
    )

    # Generate without threading
    with torch.no_grad():
        outputs = model.generate(**generation_kwargs)
    generated_tokens = outputs.sequences[0, input_ids.shape[1]:]
    generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
    # hidden states
    hidden = outputs.hidden_states  # list of tensors, one for each token, then (batch size, sequence length, hidden size)

    # TODO do this loop on the fly instead of waiting for the whole generation
    se_highlighted_text = ""
    acc_highlighted_text = ""
    for i in range(1, len(hidden)):

        # Semantic Uncertainty Probe
        token_embeddings = torch.stack([generated_token[0, 0, :].cpu() for generated_token in hidden[i]]).numpy()   # (num_layers, hidden_size)
        se_concat_layers = token_embeddings[se_layer_range[0]:se_layer_range[1]].reshape(-1)
        se_probe_pred = se_probe.predict_proba(se_concat_layers.reshape(1, -1))[0][1] * 2 - 1
        
        # Accuracy Probe
        # acc_token_embeddings = torch.stack([layer[0, -1, :].cpu() for layer in hidden_states])
        acc_concat_layers = token_embeddings[acc_layer_range[0]:acc_layer_range[1]].reshape(-1)
        acc_probe_pred = -1 * acc_probe.predict_proba(acc_concat_layers.reshape(1, -1))[0][1] * 2 - 1
        
        output_id = outputs.sequences[0, input_ids.shape[1]+i]
        output_word = tokenizer.decode(output_id)
        print(output_id, output_word, se_probe_pred, acc_probe_pred)  

        se_new_highlighted_text = highlight_text(output_word, se_probe_pred)
        acc_new_highlighted_text = highlight_text(output_word, acc_probe_pred)
        se_highlighted_text += f" {se_new_highlighted_text}"
        acc_highlighted_text += f" {acc_new_highlighted_text}"
        
        yield se_highlighted_text, acc_highlighted_text


def highlight_text(text: str, uncertainty_score: float) -> str:
    if uncertainty_score > 0:
        html_color = "#%02X%02X%02X" % (
            255,
            int(255 * (1 - uncertainty_score)),
            int(255 * (1 - uncertainty_score)),
        )
    else:
        html_color = "#%02X%02X%02X" % (
            int(255 * (1 + uncertainty_score)),
            255,
            int(255 * (1 + uncertainty_score)),
        )
    return '<span style="background-color: {}; color: black">{}</span>'.format(
        html_color, text
    )

with gr.Blocks(title="Llama-2 7B Chat with Dual Probes", css="footer {visibility: hidden}") as demo:
    gr.HTML(DESCRIPTION)
    
    with gr.Row():
        with gr.Column():
            message = gr.Textbox(label="Message")
            system_prompt = gr.Textbox(label="System prompt", lines=2)
        
        with gr.Column():
            max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
            temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
            top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
            top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
            repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
    
    with gr.Row():
        generate_btn = gr.Button("Generate")
    # add spacing between probes and titles for each output
    with gr.Row():
        with gr.Column():
            title = gr.HTML("<h2>Semantic Uncertainty Probe</h2>")
            se_output = gr.HTML(label="Semantic Uncertainty Probe")
        with gr.Column():
            title = gr.HTML("<h2>Accuracy Probe</h2>")
            acc_output = gr.HTML(label="Accuracy Probe")
    
    chat_history = gr.State([])
    
    # gr.Examples(
    #     examples=EXAMPLES,
    #     inputs=[message, system_prompt, chat_history],
    #     outputs=[se_output, acc_output],
    #     fn=generate,
    # )
    
    generate_btn.click(
        generate,
        inputs=[message, system_prompt, chat_history, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=[se_output, acc_output]
    )

# chat_interface = gr.ChatInterface(
#     fn=generate,
#     additional_inputs=[
#         gr.Textbox(label="System prompt", lines=6),
#         gr.Slider(
#             label="Max new tokens",
#             minimum=1,
#             maximum=MAX_MAX_NEW_TOKENS,
#             step=1,
#             value=DEFAULT_MAX_NEW_TOKENS,
#         ),
#         gr.Slider(
#             label="Temperature",
#             minimum=0.1,
#             maximum=4.0,
#             step=0.1,
#             value=0.6,
#         ),
#         gr.Slider(
#             label="Top-p (nucleus sampling)",
#             minimum=0.05,
#             maximum=1.0,
#             step=0.05,
#             value=0.9,
#         ),
#         gr.Slider(
#             label="Top-k",
#             minimum=1,
#             maximum=1000,
#             step=1,
#             value=50,
#         ),
#         gr.Slider(
#             label="Repetition penalty",
#             minimum=1.0,
#             maximum=2.0,
#             step=0.05,
#             value=1.2,
#         ),
#     ],
#     stop_btn=None,
#     examples=[
#         ["What is the capital of France?"],
#         ["Who landed on the moon?"],
#         ["Who is Yarin Gal?"]
#     ],
#     title="Llama-2 7B Chat with Streamable Semantic Uncertainty Probe",
#     description=DESCRIPTION,
# )

# if __name__ == "__main__":
#     chat_interface.launch()


if __name__ == "__main__":
    demo.launch()