Spaces:
Sleeping
Sleeping
File size: 7,545 Bytes
0190e25 ea36e00 77a48be 8a93d38 77a48be 45f1f60 8a93d38 45f1f60 93457a9 45f1f60 0190e25 e9acb87 0190e25 45f1f60 8a93d38 77a48be 8a93d38 45f1f60 0190e25 45f1f60 8a93d38 45f1f60 0190e25 93457a9 0190e25 93457a9 0190e25 45f1f60 0190e25 e9acb87 5c184a9 0190e25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
# import for typing
from langchain.chains import RetrievalQAWithSourcesChain
# gradio
import gradio as gr
#import random
import time
#boto3 for S3 access
import boto3
from botocore import UNSIGNED
from botocore.client import Config
# access .env file
import os
from dotenv import load_dotenv
#from bs4 import BeautifulSoup
# HF libraries
from langchain.llms import HuggingFaceHub
from langchain.embeddings import HuggingFaceHubEmbeddings
# vectorestore
from langchain.vectorstores import Chroma
#from langchain.vectorstores import FAISS
# retrieval chain
from langchain.chains import RetrievalQA
# from langchain.chains import RetrievalQAWithSourcesChain
# prompt template
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
# logging
import logging
#import zipfile
# improve results with retriever
# from langchain.retrievers import ContextualCompressionRetriever
# from langchain.retrievers.document_compressors import LLMChainExtractor
# from langchain.retrievers.document_compressors import EmbeddingsFilter
# from langchain.retrievers.multi_query import MultiQueryRetriever
# from langchain.retrievers import BM25Retriever, EnsembleRetriever
# reorder retrived documents
# from langchain.document_transformers import LongContextReorder
# github issues
#from langchain.document_loaders import GitHubIssuesLoader
# debugging
from langchain.globals import set_verbose
# caching
from langchain.globals import set_llm_cache
#from langchain.cache import InMemoryCache
# We can do the same thing with a SQLite cache
from langchain.cache import SQLiteCache
#set_llm_cache(InMemoryCache())
set_verbose(True)
# load .env variables
config = load_dotenv(".env")
HUGGINGFACEHUB_API_TOKEN=os.getenv('HUGGINGFACEHUB_API_TOKEN')
AWS_S3_LOCATION=os.getenv('AWS_S3_LOCATION')
AWS_S3_FILE=os.getenv('AWS_S3_FILE')
VS_DESTINATION=os.getenv('VS_DESTINATION')
# initialize Model config
# HuggingFaceH4/zephyr-7b-beta
# mistralai/Mistral-7B-Instruct-v0.1
model_id = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={
"temperature":0.1,
"max_new_tokens":1024,
"repetition_penalty":1.2,
# "streaming": True,
# "return_full_text":True
})
#model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
model_name = "sentence-transformers/all-mpnet-base-v2"
embeddings = HuggingFaceHubEmbeddings(repo_id=model_name)
# remove old vectorstore
if os.path.exists(VS_DESTINATION):
os.remove(VS_DESTINATION)
# remove old sqlite cache
if os.path.exists('.langchain.sqlite'):
os.remove('.langchain.sqlite')
set_llm_cache(SQLiteCache(database_path=".langchain.sqlite"))
# retrieve vectorsrore
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
## Chroma DB
s3.download_file(AWS_S3_LOCATION, AWS_S3_FILE, VS_DESTINATION)
# use the cached embeddings instead of embeddings to speed up re-retrival
db = Chroma(persist_directory="./vectorstore", embedding_function=embeddings)
db.get()
## FAISS DB
# s3.download_file('rad-rag-demos', 'vectorstores/faiss_db_ray.zip', './chroma_db/faiss_db_ray.zip')
# with zipfile.ZipFile('./chroma_db/faiss_db_ray.zip', 'r') as zip_ref:
# zip_ref.extractall('./chroma_db/')
# FAISS_INDEX_PATH='./chroma_db/faiss_db_ray'
# db = FAISS.load_local(FAISS_INDEX_PATH, embeddings)
# initialize the bm25 retriever and chroma/faiss retriever
# bm25_retriever = BM25Retriever.
# bm25_retriever.k = 2
# Retrieve more documents with higher diversity useful if your dataset has many similar documents
retriever = db.as_retriever(search_type="mmr")#, search_kwargs={'k': 3, 'lambda_mult': 0.25})
# Above a certain threshold
# retriever = db.as_retriever(
# search_type="similarity_score_threshold",
# search_kwargs={'score_threshold': 0.6}
# )
# # asks LLM to create 3 alternatives baed on user query
# multi_retriever = MultiQueryRetriever.from_llm(retriever=retriever, llm=model_id)
# # asks LLM to extract relevant parts from retrieved documents
# compressor = LLMChainExtractor.from_llm(model_id)
# compression_retriever = ContextualCompressionRetriever(base_compressor=compressor, base_retriever=multi_retriever)
global qa
template = """
You are the friendly documentation AI buddy Arti, who helps the Human in using RAY, the open-source unified framework for scaling AI and Python applications.
Use the following context (delimited by <ctx></ctx>) and the chat history (delimited by <hs></hs>) to answer the question :
------
<ctx>
{context}
</ctx>
------
<hs>
{history}
</hs>
------
{question}
Answer:
"""
prompt = PromptTemplate(
input_variables=["history", "context", "question"],
template=template,
)
memory = ConversationBufferMemory(memory_key="history", input_key="question")
# logging for the chain
logging.basicConfig()
logging.getLogger("langchain.retrievers").setLevel(logging.INFO)
logging.getLogger("langchain.chains").setLevel(logging.INFO)
qa = RetrievalQA.from_chain_type(llm=model_id, retriever=retriever, return_source_documents=True, verbose=True, chain_type_kwargs={
"verbose": True,
"memory": memory,
"prompt": prompt
}
)
# qa = RetrievalQAWithSourcesChain.from_chain_type(llm=model_id, retriever=retriever, return_source_documents=True, verbose=True, chain_type_kwargs={
# "verbose": True,
# "memory": memory,
# "prompt": prompt,
# "document_variable_name": "context"
# }
# )
#####
#
# Gradio fns
####
def create_gradio_interface(qa:RetrievalQAWithSourcesChain):
"""
Create a gradio interface for the QA model
"""
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
response = infer(history[-1][0], history)
sources = [doc.metadata.get("source") for doc in response['source_documents']]
src_list = '\n'.join(sources)
print_this = response['result'] + "\n\n\n Sources: \n\n\n" + src_list
history[-1][1] = ""
for character in response['result']: #print_this: #
#print_this:
history[-1][1] += character
time.sleep(0.01)
yield history
# history[-1][1] = print_this #response['answer']
# return history
def infer(question, history):
query = question
result = qa({"query": query, "history": history, "question": question})
return result
css="""
#col-container {min-width: 800px; max-width: 1920px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 1920px;">
<h1>Chat with your Documentation</h1>
<p style="text-align: center;">This is a privately hosten Docs AI Buddy, <br />
It will help you with any question regarding the documentation of Ray ;)</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Column(min_width=900, elem_id="col-container"):
gr.HTML(title)
chatbot = gr.Chatbot([], elem_id="chatbot")
#with gr.Row():
# clear = gr.Button("Clear")
with gr.Row():
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
with gr.Row():
clear = gr.ClearButton([chatbot, question])
question.submit(add_text, [chatbot, question], [chatbot, question], queue=False).then(
bot, chatbot, chatbot
)
#clear.click(lambda: None, None, chatbot, queue=False)
return demo
if __name__ == "__main__":
demo = create_gradio_interface(qa)
demo.queue().launch()
|