Spaces:
Sleeping
Sleeping
File size: 4,848 Bytes
77a48be 93457a9 77a48be 45f1f60 77a48be 45f1f60 77a48be 45f1f60 ea36e00 45f1f60 93457a9 77a48be dc03a57 77a48be 93457a9 45f1f60 7165161 45f1f60 7165161 45f1f60 ea36e00 a2318db 93457a9 45f1f60 93457a9 45f1f60 77a48be 0737e52 45f1f60 93457a9 ea36e00 45f1f60 7165161 93457a9 7165161 45f1f60 ea36e00 93457a9 77a48be 93457a9 77a48be ea36e00 45f1f60 dc03a57 45f1f60 ea36e00 93457a9 ea36e00 77a48be a2318db 45f1f60 ea36e00 45f1f60 93457a9 45f1f60 93457a9 45f1f60 ea36e00 45f1f60 77a48be 93457a9 45f1f60 93457a9 45f1f60 93457a9 45f1f60 93457a9 45f1f60 93457a9 45f1f60 93457a9 45f1f60 93457a9 45f1f60 93457a9 45f1f60 ea36e00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# logging
import logging
# access .env file
import os
from dotenv import load_dotenv
import time
#boto3 for S3 access
import boto3
from botocore import UNSIGNED
from botocore.client import Config
# HF libraries
from langchain.llms import HuggingFaceHub
from langchain.embeddings import HuggingFaceHubEmbeddings
# vectorestore
from langchain.vectorstores import Chroma
# retrieval chain
from langchain.chains import RetrievalQAWithSourcesChain
# prompt template
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
from langchain.retrievers import BM25Retriever, EnsembleRetriever
# reorder retrived documents
# github issues
from langchain.document_loaders import GitHubIssuesLoader
# debugging
from langchain.globals import set_verbose
# caching
from langchain.globals import set_llm_cache
# We can do the same thing with a SQLite cache
from langchain.cache import SQLiteCache
# gradio
import gradio as gr
# template for prompt
from prompt import template
set_verbose(True)
# load .env variables
config = load_dotenv(".env")
HUGGINGFACEHUB_API_TOKEN=os.getenv('HUGGINGFACEHUB_API_TOKEN')
AWS_S3_LOCATION=os.getenv('AWS_S3_LOCATION')
AWS_S3_FILE=os.getenv('AWS_S3_FILE')
VS_DESTINATION=os.getenv('VS_DESTINATION')
# initialize Model config
llm_model_name = "mistralai/Mistral-7B-Instruct-v0.1"
# changed named to model_id to llm as is common
llm = HuggingFaceHub(repo_id=llm_model_name, model_kwargs={
# "temperature":0.1,
"max_new_tokens":1024,
"repetition_penalty":1.2,
# "streaming": True,
# "return_full_text":True
})
# initialize Embedding config
embedding_model_name = "sentence-transformers/all-mpnet-base-v2"
embeddings = HuggingFaceHubEmbeddings(repo_id=embedding_model_name)
# remove old vectorstore
if os.path.exists(VS_DESTINATION):
os.remove(VS_DESTINATION)
# remove old sqlite cache
if os.path.exists('.langchain.sqlite'):
os.remove('.langchain.sqlite')
set_llm_cache(SQLiteCache(database_path=".langchain.sqlite"))
# retrieve vectorsrore
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
## Chroma DB
s3.download_file(AWS_S3_LOCATION, AWS_S3_FILE, VS_DESTINATION)
# use the cached embeddings instead of embeddings to speed up re-retrival
db = Chroma(persist_directory="./vectorstore", embedding_function=embeddings)
db.get()
retriever = db.as_retriever(search_type="mmr")#, search_kwargs={'k': 3, 'lambda_mult': 0.25})
# asks LLM to create 3 alternatives baed on user query
# asks LLM to extract relevant parts from retrieved documents
global qa
prompt = PromptTemplate(
input_variables=["history", "context", "question"],
template=template,
)
memory = ConversationBufferMemory(memory_key="history", input_key="question")
# logging for the chain
logging.basicConfig()
logging.getLogger("langchain.retrievers").setLevel(logging.INFO)
logging.getLogger("langchain.chains.qa_with_sources").setLevel(logging.INFO)
qa = RetrievalQAWithSourcesChain.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True, verbose=True, chain_type_kwargs={
"verbose": True,
"memory": memory,
"prompt": prompt,
"document_variable_name": "context"
}
)
#####
#
# Gradio fns
####
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
response = infer(history[-1][0], history)
sources = [doc.metadata.get("source") for doc in response['source_documents']]
src_list = '\n'.join(sources)
print_this = response['answer'] + "\n\n\n Sources: \n\n\n" + src_list
history[-1][1] = print_this #response['answer']
return history
def infer(question, history):
query = question
result = qa({"query": query, "history": history, "question": question})
return result
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 1920px;">
<h1>Chat with your Documentation</h1>
<p style="text-align: center;">This is a privately hosten Docs AI Buddy, <br />
It will help you with any question regarding the documentation of Ray ;)</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Column(min_width=900, elem_id="col-container"):
gr.HTML(title)
chatbot = gr.Chatbot([], elem_id="chatbot")
#with gr.Row():
# clear = gr.Button("Clear")
with gr.Row():
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
with gr.Row():
clear = gr.ClearButton([chatbot, question])
question.submit(add_text, [chatbot, question], [chatbot, question], queue=False).then(
bot, chatbot, chatbot
)
#clear.click(lambda: None, None, chatbot, queue=False)
demo.queue().launch() |