sabretoothedhugs's picture
v2
9b19c29
from collections.abc import Callable, Sequence
from typing import Any
import numpy as np
import torch
from torch import nn
from examples.atari.tianshou.highlevel.env import Environments
from examples.atari.tianshou.highlevel.module.actor import ActorFactory
from examples.atari.tianshou.highlevel.module.core import (
TDevice,
)
from examples.atari.tianshou.highlevel.module.intermediate import (
IntermediateModule,
IntermediateModuleFactory,
)
from examples.atari.tianshou.utils.net.common import NetBase
from examples.atari.tianshou.utils.net.discrete import Actor, NoisyLinear
def layer_init(layer: nn.Module, std: float = np.sqrt(2), bias_const: float = 0.0) -> nn.Module:
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
class ScaledObsInputModule(torch.nn.Module):
def __init__(self, module: NetBase, denom: float = 255.0) -> None:
super().__init__()
self.module = module
self.denom = denom
# This is required such that the value can be retrieved by downstream modules (see usages of get_output_dim)
self.output_dim = module.output_dim
def forward(
self,
obs: np.ndarray | torch.Tensor,
state: Any | None = None,
info: dict[str, Any] | None = None,
) -> tuple[torch.Tensor, Any]:
if info is None:
info = {}
return self.module.forward(obs / self.denom, state, info)
def scale_obs(module: NetBase, denom: float = 255.0) -> ScaledObsInputModule:
return ScaledObsInputModule(module, denom=denom)
class DQN(NetBase[Any]):
"""Reference: Human-level control through deep reinforcement learning.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(
self,
c: int,
h: int,
w: int,
action_shape: Sequence[int] | int,
device: str | int | torch.device = "cpu",
features_only: bool = False,
output_dim_added_layer: int | None = None,
layer_init: Callable[[nn.Module], nn.Module] = lambda x: x,
) -> None:
# TODO: Add docstring
if not features_only and output_dim_added_layer is not None:
raise ValueError(
"Should not provide explicit output dimension using `output_dim_added_layer` when `features_only` is true.",
)
super().__init__()
self.device = device
self.net = nn.Sequential(
layer_init(nn.Conv2d(c, 32, kernel_size=8, stride=4)),
nn.ReLU(inplace=True),
layer_init(nn.Conv2d(32, 64, kernel_size=4, stride=2)),
nn.ReLU(inplace=True),
layer_init(nn.Conv2d(64, 64, kernel_size=3, stride=1)),
nn.ReLU(inplace=True),
nn.Flatten(),
)
with torch.no_grad():
base_cnn_output_dim = int(np.prod(self.net(torch.zeros(1, c, h, w)).shape[1:]))
if not features_only:
action_dim = int(np.prod(action_shape))
self.net = nn.Sequential(
self.net,
layer_init(nn.Linear(base_cnn_output_dim, 512)),
nn.ReLU(inplace=True),
layer_init(nn.Linear(512, action_dim)),
)
self.output_dim = action_dim
elif output_dim_added_layer is not None:
self.net = nn.Sequential(
self.net,
layer_init(nn.Linear(base_cnn_output_dim, output_dim_added_layer)),
nn.ReLU(inplace=True),
)
self.output_dim = output_dim_added_layer
else:
self.output_dim = base_cnn_output_dim
def forward(
self,
obs: np.ndarray | torch.Tensor,
state: Any | None = None,
info: dict[str, Any] | None = None,
**kwargs: Any,
) -> tuple[torch.Tensor, Any]:
r"""Mapping: s -> Q(s, \*)."""
obs = torch.as_tensor(obs, device=self.device, dtype=torch.float32)
return self.net(obs), state
class C51(DQN):
"""Reference: A distributional perspective on reinforcement learning.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(
self,
c: int,
h: int,
w: int,
action_shape: Sequence[int],
num_atoms: int = 51,
device: str | int | torch.device = "cpu",
) -> None:
self.action_num = int(np.prod(action_shape))
super().__init__(c, h, w, [self.action_num * num_atoms], device)
self.num_atoms = num_atoms
def forward(
self,
obs: np.ndarray | torch.Tensor,
state: Any | None = None,
info: dict[str, Any] | None = None,
**kwargs: Any,
) -> tuple[torch.Tensor, Any]:
r"""Mapping: x -> Z(x, \*)."""
obs, state = super().forward(obs)
obs = obs.view(-1, self.num_atoms).softmax(dim=-1)
obs = obs.view(-1, self.action_num, self.num_atoms)
return obs, state
class Rainbow(DQN):
"""Reference: Rainbow: Combining Improvements in Deep Reinforcement Learning.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(
self,
c: int,
h: int,
w: int,
action_shape: Sequence[int],
num_atoms: int = 51,
noisy_std: float = 0.5,
device: str | int | torch.device = "cpu",
is_dueling: bool = True,
is_noisy: bool = True,
) -> None:
super().__init__(c, h, w, action_shape, device, features_only=True)
self.action_num = int(np.prod(action_shape))
self.num_atoms = num_atoms
def linear(x: int, y: int) -> NoisyLinear | nn.Linear:
if is_noisy:
return NoisyLinear(x, y, noisy_std)
return nn.Linear(x, y)
self.Q = nn.Sequential(
linear(self.output_dim, 512),
nn.ReLU(inplace=True),
linear(512, self.action_num * self.num_atoms),
)
self._is_dueling = is_dueling
if self._is_dueling:
self.V = nn.Sequential(
linear(self.output_dim, 512),
nn.ReLU(inplace=True),
linear(512, self.num_atoms),
)
self.output_dim = self.action_num * self.num_atoms
def forward(
self,
obs: np.ndarray | torch.Tensor,
state: Any | None = None,
info: dict[str, Any] | None = None,
**kwargs: Any,
) -> tuple[torch.Tensor, Any]:
r"""Mapping: x -> Z(x, \*)."""
obs, state = super().forward(obs)
q = self.Q(obs)
q = q.view(-1, self.action_num, self.num_atoms)
if self._is_dueling:
v = self.V(obs)
v = v.view(-1, 1, self.num_atoms)
logits = q - q.mean(dim=1, keepdim=True) + v
else:
logits = q
probs = logits.softmax(dim=2)
return probs, state
class QRDQN(DQN):
"""Reference: Distributional Reinforcement Learning with Quantile Regression.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(
self,
*,
c: int,
h: int,
w: int,
action_shape: Sequence[int] | int,
num_quantiles: int = 200,
device: str | int | torch.device = "cpu",
) -> None:
self.action_num = int(np.prod(action_shape))
super().__init__(c, h, w, [self.action_num * num_quantiles], device)
self.num_quantiles = num_quantiles
def forward(
self,
obs: np.ndarray | torch.Tensor,
state: Any | None = None,
info: dict[str, Any] | None = None,
**kwargs: Any,
) -> tuple[torch.Tensor, Any]:
r"""Mapping: x -> Z(x, \*)."""
obs, state = super().forward(obs)
obs = obs.view(-1, self.action_num, self.num_quantiles)
return obs, state
class ActorFactoryAtariDQN(ActorFactory):
def __init__(
self,
scale_obs: bool = True,
features_only: bool = False,
output_dim_added_layer: int | None = None,
) -> None:
self.output_dim_added_layer = output_dim_added_layer
self.scale_obs = scale_obs
self.features_only = features_only
def create_module(self, envs: Environments, device: TDevice) -> Actor:
c, h, w = envs.get_observation_shape() # type: ignore # only right shape is a sequence of length 3
action_shape = envs.get_action_shape()
if isinstance(action_shape, np.int64):
action_shape = int(action_shape)
net: DQN | ScaledObsInputModule
net = DQN(
c=c,
h=h,
w=w,
action_shape=action_shape,
device=device,
features_only=self.features_only,
output_dim_added_layer=self.output_dim_added_layer,
layer_init=layer_init,
)
if self.scale_obs:
net = scale_obs(net)
return Actor(net, envs.get_action_shape(), device=device, softmax_output=False).to(device)
class IntermediateModuleFactoryAtariDQN(IntermediateModuleFactory):
def __init__(self, features_only: bool = False, net_only: bool = False) -> None:
self.features_only = features_only
self.net_only = net_only
def create_intermediate_module(self, envs: Environments, device: TDevice) -> IntermediateModule:
obs_shape = envs.get_observation_shape()
if isinstance(obs_shape, int):
obs_shape = [obs_shape]
assert len(obs_shape) == 3
c, h, w = obs_shape
action_shape = envs.get_action_shape()
if isinstance(action_shape, np.int64):
action_shape = int(action_shape)
dqn = DQN(
c=c,
h=h,
w=w,
action_shape=action_shape,
device=device,
features_only=self.features_only,
).to(device)
module = dqn.net if self.net_only else dqn
return IntermediateModule(module, dqn.output_dim)
class IntermediateModuleFactoryAtariDQNFeatures(IntermediateModuleFactoryAtariDQN):
def __init__(self) -> None:
super().__init__(features_only=True, net_only=True)