sabretoothedhugs's picture
v2
9b19c29
# Borrow a lot from openai baselines:
# https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py
import logging
import warnings
from collections import deque
from typing import Any, SupportsFloat
import cv2
import gymnasium as gym
import numpy as np
from gymnasium import Env
from examples.atari.tianshou.env import BaseVectorEnv
from examples.atari.tianshou.highlevel.env import (
EnvFactoryRegistered,
EnvMode,
EnvPoolFactory,
VectorEnvType,
)
from examples.atari.tianshou.highlevel.trainer import EpochStopCallback, TrainingContext
envpool_is_available = True
try:
import envpool
except ImportError:
envpool_is_available = False
envpool = None
log = logging.getLogger(__name__)
def _parse_reset_result(reset_result: tuple) -> tuple[tuple, dict, bool]:
contains_info = (
isinstance(reset_result, tuple)
and len(reset_result) == 2
and isinstance(reset_result[1], dict)
)
if contains_info:
return reset_result[0], reset_result[1], contains_info
return reset_result, {}, contains_info
def get_space_dtype(obs_space: gym.spaces.Box) -> type[np.floating] | type[np.integer]:
obs_space_dtype: type[np.integer] | type[np.floating]
if np.issubdtype(obs_space.dtype, np.integer):
obs_space_dtype = np.integer
elif np.issubdtype(obs_space.dtype, np.floating):
obs_space_dtype = np.floating
else:
raise TypeError(
f"Unsupported observation space dtype: {obs_space.dtype}. "
f"This might be a bug in tianshou or gymnasium, please report it!",
)
return obs_space_dtype
class NoopResetEnv(gym.Wrapper):
"""Sample initial states by taking random number of no-ops on reset.
No-op is assumed to be action 0.
:param gym.Env env: the environment to wrap.
:param int noop_max: the maximum value of no-ops to run.
"""
def __init__(self, env: gym.Env, noop_max: int = 30) -> None:
super().__init__(env)
self.noop_max = noop_max
self.noop_action = 0
assert hasattr(env.unwrapped, "get_action_meanings")
assert env.unwrapped.get_action_meanings()[0] == "NOOP"
def reset(self, **kwargs: Any) -> tuple[Any, dict[str, Any]]:
_, info, return_info = _parse_reset_result(self.env.reset(**kwargs))
noops = self.unwrapped.np_random.integers(1, self.noop_max + 1)
for _ in range(noops):
step_result = self.env.step(self.noop_action)
if len(step_result) == 4:
obs, rew, done, info = step_result # type: ignore[unreachable] # mypy doesn't know that Gym version <0.26 has only 4 items (no truncation)
else:
obs, rew, term, trunc, info = step_result
done = term or trunc
if done:
obs, info, _ = _parse_reset_result(self.env.reset())
if return_info:
return obs, info
return obs, {}
class MaxAndSkipEnv(gym.Wrapper):
"""Return only every `skip`-th frame (frameskipping) using most recent raw observations (for max pooling across time steps).
:param gym.Env env: the environment to wrap.
:param int skip: number of `skip`-th frame.
"""
def __init__(self, env: gym.Env, skip: int = 4) -> None:
super().__init__(env)
self._skip = skip
def step(self, action: Any) -> tuple[Any, float, bool, bool, dict[str, Any]]:
"""Step the environment with the given action.
Repeat action, sum reward, and max over last observations.
"""
obs_list = []
total_reward = 0.0
new_step_api = False
for _ in range(self._skip):
step_result = self.env.step(action)
if len(step_result) == 4:
obs, reward, done, info = step_result # type: ignore[unreachable] # mypy doesn't know that Gym version <0.26 has only 4 items (no truncation)
else:
obs, reward, term, trunc, info = step_result
done = term or trunc
new_step_api = True
obs_list.append(obs)
total_reward += float(reward)
if done:
break
max_frame = np.max(obs_list[-2:], axis=0)
if new_step_api:
return max_frame, total_reward, term, trunc, info
return max_frame, total_reward, done, info.get("TimeLimit.truncated", False), info
class EpisodicLifeEnv(gym.Wrapper):
"""Make end-of-life == end-of-episode, but only reset on true game over.
It helps the value estimation.
:param gym.Env env: the environment to wrap.
"""
def __init__(self, env: gym.Env) -> None:
super().__init__(env)
self.lives = 0
self.was_real_done = True
self._return_info = False
def step(self, action: Any) -> tuple[Any, float, bool, bool, dict[str, Any]]:
step_result = self.env.step(action)
if len(step_result) == 4:
obs, reward, done, info = step_result # type: ignore[unreachable] # mypy doesn't know that Gym version <0.26 has only 4 items (no truncation)
new_step_api = False
else:
obs, reward, term, trunc, info = step_result
done = term or trunc
new_step_api = True
reward = float(reward)
self.was_real_done = done
# check current lives, make loss of life terminal, then update lives to
# handle bonus lives
assert hasattr(self.env.unwrapped, "ale")
lives = self.env.unwrapped.ale.lives()
if 0 < lives < self.lives:
# for Qbert sometimes we stay in lives == 0 condition for a few
# frames, so its important to keep lives > 0, so that we only reset
# once the environment is actually done.
done = True
term = True
self.lives = lives
if new_step_api:
return obs, reward, term, trunc, info
return obs, reward, done, info.get("TimeLimit.truncated", False), info
def reset(self, **kwargs: Any) -> tuple[Any, dict[str, Any]]:
"""Calls the Gym environment reset, only when lives are exhausted.
This way all states are still reachable even though lives are episodic, and
the learner need not know about any of this behind-the-scenes.
"""
if self.was_real_done:
obs, info, self._return_info = _parse_reset_result(self.env.reset(**kwargs))
else:
# no-op step to advance from terminal/lost life state
step_result = self.env.step(0)
obs, info = step_result[0], step_result[-1]
assert hasattr(self.env.unwrapped, "ale")
self.lives = self.env.unwrapped.ale.lives()
if self._return_info:
return obs, info
return obs, {}
class FireResetEnv(gym.Wrapper):
"""Take action on reset for environments that are fixed until firing.
Related discussion: https://github.com/openai/baselines/issues/240.
:param gym.Env env: the environment to wrap.
"""
def __init__(self, env: gym.Env) -> None:
super().__init__(env)
assert hasattr(env.unwrapped, "get_action_meanings")
assert env.unwrapped.get_action_meanings()[1] == "FIRE"
assert len(env.unwrapped.get_action_meanings()) >= 3
def reset(self, **kwargs: Any) -> tuple[Any, dict]:
_, _, return_info = _parse_reset_result(self.env.reset(**kwargs))
obs = self.env.step(1)[0]
return obs, {}
class WarpFrame(gym.ObservationWrapper):
"""Warp frames to 84x84 as done in the Nature paper and later work.
:param gym.Env env: the environment to wrap.
"""
def __init__(self, env: gym.Env) -> None:
super().__init__(env)
self.size = 84
obs_space = env.observation_space
assert isinstance(obs_space, gym.spaces.Box)
obs_space_dtype = get_space_dtype(obs_space)
self.observation_space = gym.spaces.Box(
low=np.min(obs_space.low),
high=np.max(obs_space.high),
shape=(self.size, self.size),
dtype=obs_space_dtype,
)
def observation(self, frame: np.ndarray) -> np.ndarray:
"""Returns the current observation from a frame."""
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
return cv2.resize(frame, (self.size, self.size), interpolation=cv2.INTER_AREA)
class ScaledFloatFrame(gym.ObservationWrapper):
"""Normalize observations to 0~1.
:param gym.Env env: the environment to wrap.
"""
def __init__(self, env: gym.Env) -> None:
super().__init__(env)
obs_space = env.observation_space
assert isinstance(obs_space, gym.spaces.Box)
low = np.min(obs_space.low)
high = np.max(obs_space.high)
self.bias = low
self.scale = high - low
self.observation_space = gym.spaces.Box(
low=0.0,
high=1.0,
shape=obs_space.shape,
dtype=np.float32,
)
def observation(self, observation: np.ndarray) -> np.ndarray:
return (observation - self.bias) / self.scale
class ClipRewardEnv(gym.RewardWrapper):
"""clips the reward to {+1, 0, -1} by its sign.
:param gym.Env env: the environment to wrap.
"""
def __init__(self, env: gym.Env) -> None:
super().__init__(env)
self.reward_range = (-1, 1)
def reward(self, reward: SupportsFloat) -> int:
"""Bin reward to {+1, 0, -1} by its sign. Note: np.sign(0) == 0."""
return np.sign(float(reward))
class FrameStack(gym.Wrapper):
"""Stack n_frames last frames.
:param gym.Env env: the environment to wrap.
:param int n_frames: the number of frames to stack.
"""
def __init__(self, env: gym.Env, n_frames: int) -> None:
super().__init__(env)
self.n_frames: int = n_frames
self.frames: deque[tuple[Any, ...]] = deque([], maxlen=n_frames)
obs_space = env.observation_space
obs_space_shape = env.observation_space.shape
assert obs_space_shape is not None
shape = (n_frames, *obs_space_shape)
assert isinstance(obs_space, gym.spaces.Box)
obs_space_dtype = get_space_dtype(obs_space)
self.observation_space = gym.spaces.Box(
low=np.min(obs_space.low),
high=np.max(obs_space.high),
shape=shape,
dtype=obs_space_dtype,
)
def reset(self, **kwargs: Any) -> tuple[np.ndarray, dict]:
obs, info, return_info = _parse_reset_result(self.env.reset(**kwargs))
for _ in range(self.n_frames):
self.frames.append(obs)
return (self._get_ob(), info) if return_info else (self._get_ob(), {})
def step(self, action: Any) -> tuple[np.ndarray, float, bool, bool, dict[str, Any]]:
step_result = self.env.step(action)
done: bool
if len(step_result) == 4:
obs, reward, done, info = step_result # type: ignore[unreachable] # mypy doesn't know that Gym version <0.26 has only 4 items (no truncation)
new_step_api = False
else:
obs, reward, term, trunc, info = step_result
new_step_api = True
self.frames.append(obs)
reward = float(reward)
if new_step_api:
return self._get_ob(), reward, term, trunc, info
return self._get_ob(), reward, done, info.get("TimeLimit.truncated", False), info
def _get_ob(self) -> np.ndarray:
# the original wrapper use `LazyFrames` but since we use np buffer,
# it has no effect
return np.stack(self.frames, axis=0)
def wrap_deepmind(
env: gym.Env,
episode_life: bool = True,
clip_rewards: bool = True,
frame_stack: int = 4,
scale: bool = False,
warp_frame: bool = True,
) -> (
MaxAndSkipEnv
| EpisodicLifeEnv
| FireResetEnv
| WarpFrame
| ScaledFloatFrame
| ClipRewardEnv
| FrameStack
):
"""Configure environment for DeepMind-style Atari.
The observation is channel-first: (c, h, w) instead of (h, w, c).
:param env: the Atari environment to wrap.
:param bool episode_life: wrap the episode life wrapper.
:param bool clip_rewards: wrap the reward clipping wrapper.
:param int frame_stack: wrap the frame stacking wrapper.
:param bool scale: wrap the scaling observation wrapper.
:param bool warp_frame: wrap the grayscale + resize observation wrapper.
:return: the wrapped atari environment.
"""
env = NoopResetEnv(env, noop_max=30)
env = MaxAndSkipEnv(env, skip=4)
assert hasattr(env.unwrapped, "get_action_meanings") # for mypy
wrapped_env: MaxAndSkipEnv | EpisodicLifeEnv | FireResetEnv | WarpFrame | ScaledFloatFrame | ClipRewardEnv | FrameStack = (
env
)
if episode_life:
wrapped_env = EpisodicLifeEnv(wrapped_env)
if "FIRE" in env.unwrapped.get_action_meanings():
wrapped_env = FireResetEnv(wrapped_env)
if warp_frame:
wrapped_env = WarpFrame(wrapped_env)
if scale:
wrapped_env = ScaledFloatFrame(wrapped_env)
if clip_rewards:
wrapped_env = ClipRewardEnv(wrapped_env)
if frame_stack:
wrapped_env = FrameStack(wrapped_env, frame_stack)
return wrapped_env
def make_atari_env(
task: str,
seed: int,
training_num: int,
test_num: int,
scale: int | bool = False,
frame_stack: int = 4,
) -> tuple[Env, BaseVectorEnv, BaseVectorEnv]:
"""Wrapper function for Atari env.
If EnvPool is installed, it will automatically switch to EnvPool's Atari env.
:return: a tuple of (single env, training envs, test envs).
"""
env_factory = AtariEnvFactory(task, seed, seed + training_num, frame_stack, scale=bool(scale))
envs = env_factory.create_envs(training_num, test_num)
return envs.env, envs.train_envs, envs.test_envs
class AtariEnvFactory(EnvFactoryRegistered):
def __init__(
self,
task: str,
train_seed: int,
test_seed: int,
frame_stack: int,
scale: bool = False,
use_envpool_if_available: bool = True,
venv_type: VectorEnvType = VectorEnvType.SUBPROC_SHARED_MEM_AUTO,
) -> None:
assert "NoFrameskip" in task
self.frame_stack = frame_stack
self.scale = scale
envpool_factory = None
if use_envpool_if_available:
if envpool_is_available:
envpool_factory = self.EnvPoolFactoryAtari(self)
log.info("Using envpool, because it available")
else:
log.info("Not using envpool, because it is not available")
super().__init__(
task=task,
train_seed=train_seed,
test_seed=test_seed,
venv_type=venv_type,
envpool_factory=envpool_factory,
)
def create_env(self, mode: EnvMode) -> gym.Env:
env = super().create_env(mode)
is_train = mode == EnvMode.TRAIN
return wrap_deepmind(
env,
episode_life=is_train,
clip_rewards=is_train,
frame_stack=self.frame_stack,
scale=self.scale,
)
class EnvPoolFactoryAtari(EnvPoolFactory):
"""Atari-specific envpool creation.
Since envpool internally handles the functions that are implemented through the wrappers in `wrap_deepmind`,
it sets the creation keyword arguments accordingly.
"""
def __init__(self, parent: "AtariEnvFactory") -> None:
self.parent = parent
if self.parent.scale:
warnings.warn(
"EnvPool does not include ScaledFloatFrame wrapper, "
"please compensate by scaling inside your network's forward function (e.g. `x = x / 255.0` for Atari)",
)
def _transform_task(self, task: str) -> str:
task = super()._transform_task(task)
# TODO: Maybe warn user, explain why this is needed
return task.replace("NoFrameskip-v4", "-v5")
def _transform_kwargs(self, kwargs: dict, mode: EnvMode) -> dict:
kwargs = super()._transform_kwargs(kwargs, mode)
is_train = mode == EnvMode.TRAIN
kwargs["reward_clip"] = is_train
kwargs["episodic_life"] = is_train
kwargs["stack_num"] = self.parent.frame_stack
return kwargs
class AtariEpochStopCallback(EpochStopCallback):
def __init__(self, task: str) -> None:
self.task = task
def should_stop(self, mean_rewards: float, context: TrainingContext) -> bool:
env = context.envs.env
if env.spec and env.spec.reward_threshold:
return mean_rewards >= env.spec.reward_threshold
if "Pong" in self.task:
return mean_rewards >= 20
return False