sabretoothedhugs's picture
v2
9b19c29
import contextlib
from collections.abc import Callable
from typing import Any
import gymnasium as gym
import numpy as np
from tianshou.env.utils import ENV_TYPE, gym_new_venv_step_type
from tianshou.env.worker import EnvWorker
with contextlib.suppress(ImportError):
import ray
# mypy: disable-error-code="unused-ignore"
class _SetAttrWrapper(gym.Wrapper):
def set_env_attr(self, key: str, value: Any) -> None:
setattr(self.env.unwrapped, key, value)
def get_env_attr(self, key: str) -> Any:
return getattr(self.env, key)
class RayEnvWorker(EnvWorker):
"""Ray worker used in RayVectorEnv."""
def __init__(
self,
env_fn: Callable[[], ENV_TYPE],
) -> None: # TODO: is ENV_TYPE actually correct?
self.env = ray.remote(_SetAttrWrapper).options(num_cpus=0).remote(env_fn()) # type: ignore
super().__init__(env_fn)
def get_env_attr(self, key: str) -> Any:
return ray.get(self.env.get_env_attr.remote(key))
def set_env_attr(self, key: str, value: Any) -> None:
ray.get(self.env.set_env_attr.remote(key, value))
def reset(self, **kwargs: Any) -> Any:
if "seed" in kwargs:
super().seed(kwargs["seed"])
return ray.get(self.env.reset.remote(**kwargs))
@staticmethod
def wait( # type: ignore
workers: list["RayEnvWorker"],
wait_num: int,
timeout: float | None = None,
) -> list["RayEnvWorker"]:
results = [x.result for x in workers]
ready_results, _ = ray.wait(results, num_returns=wait_num, timeout=timeout)
return [workers[results.index(result)] for result in ready_results]
def send(self, action: np.ndarray | None, **kwargs: Any) -> None:
# self.result is actually a handle
if action is None:
self.result = self.env.reset.remote(**kwargs)
else:
self.result = self.env.step.remote(action)
def recv(self) -> gym_new_venv_step_type:
return ray.get(self.result) # type: ignore
def seed(self, seed: int | None = None) -> list[int] | None:
super().seed(seed)
try:
return ray.get(self.env.seed.remote(seed))
except (AttributeError, NotImplementedError):
self.env.reset.remote(seed=seed)
return None
def render(self, **kwargs: Any) -> Any:
return ray.get(self.env.render.remote(**kwargs))
def close_env(self) -> None:
ray.get(self.env.close.remote())