|
from abc import ABC, abstractmethod |
|
from collections.abc import Callable, Sequence |
|
from typing import Any, Generic, TypeAlias, TypeVar, cast, no_type_check |
|
|
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
|
|
from tianshou.data.batch import Batch |
|
from tianshou.data.types import RecurrentStateBatch |
|
|
|
ModuleType = type[nn.Module] |
|
ArgsType = tuple[Any, ...] | dict[Any, Any] | Sequence[tuple[Any, ...]] | Sequence[dict[Any, Any]] |
|
TActionShape: TypeAlias = Sequence[int] | int | np.int64 |
|
TLinearLayer: TypeAlias = Callable[[int, int], nn.Module] |
|
T = TypeVar("T") |
|
|
|
|
|
def miniblock( |
|
input_size: int, |
|
output_size: int = 0, |
|
norm_layer: ModuleType | None = None, |
|
norm_args: tuple[Any, ...] | dict[Any, Any] | None = None, |
|
activation: ModuleType | None = None, |
|
act_args: tuple[Any, ...] | dict[Any, Any] | None = None, |
|
linear_layer: TLinearLayer = nn.Linear, |
|
) -> list[nn.Module]: |
|
"""Construct a miniblock with given input/output-size, norm layer and activation.""" |
|
layers: list[nn.Module] = [linear_layer(input_size, output_size)] |
|
if norm_layer is not None: |
|
if isinstance(norm_args, tuple): |
|
layers += [norm_layer(output_size, *norm_args)] |
|
elif isinstance(norm_args, dict): |
|
layers += [norm_layer(output_size, **norm_args)] |
|
else: |
|
layers += [norm_layer(output_size)] |
|
if activation is not None: |
|
if isinstance(act_args, tuple): |
|
layers += [activation(*act_args)] |
|
elif isinstance(act_args, dict): |
|
layers += [activation(**act_args)] |
|
else: |
|
layers += [activation()] |
|
return layers |
|
|
|
|
|
class MLP(nn.Module): |
|
"""Simple MLP backbone. |
|
|
|
Create a MLP of size input_dim * hidden_sizes[0] * hidden_sizes[1] * ... |
|
* hidden_sizes[-1] * output_dim |
|
|
|
:param input_dim: dimension of the input vector. |
|
:param output_dim: dimension of the output vector. If set to 0, there |
|
is no final linear layer. |
|
:param hidden_sizes: shape of MLP passed in as a list, not including |
|
input_dim and output_dim. |
|
:param norm_layer: use which normalization before activation, e.g., |
|
``nn.LayerNorm`` and ``nn.BatchNorm1d``. Default to no normalization. |
|
You can also pass a list of normalization modules with the same length |
|
of hidden_sizes, to use different normalization module in different |
|
layers. Default to no normalization. |
|
:param activation: which activation to use after each layer, can be both |
|
the same activation for all layers if passed in nn.Module, or different |
|
activation for different Modules if passed in a list. Default to |
|
nn.ReLU. |
|
:param device: which device to create this model on. Default to None. |
|
:param linear_layer: use this module as linear layer. Default to nn.Linear. |
|
:param flatten_input: whether to flatten input data. Default to True. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_dim: int, |
|
output_dim: int = 0, |
|
hidden_sizes: Sequence[int] = (), |
|
norm_layer: ModuleType | Sequence[ModuleType] | None = None, |
|
norm_args: ArgsType | None = None, |
|
activation: ModuleType | Sequence[ModuleType] | None = nn.ReLU, |
|
act_args: ArgsType | None = None, |
|
device: str | int | torch.device | None = None, |
|
linear_layer: TLinearLayer = nn.Linear, |
|
flatten_input: bool = True, |
|
) -> None: |
|
super().__init__() |
|
self.device = device |
|
if norm_layer: |
|
if isinstance(norm_layer, list): |
|
assert len(norm_layer) == len(hidden_sizes) |
|
norm_layer_list = norm_layer |
|
if isinstance(norm_args, list): |
|
assert len(norm_args) == len(hidden_sizes) |
|
norm_args_list = norm_args |
|
else: |
|
norm_args_list = [norm_args for _ in range(len(hidden_sizes))] |
|
else: |
|
norm_layer_list = [norm_layer for _ in range(len(hidden_sizes))] |
|
norm_args_list = [norm_args for _ in range(len(hidden_sizes))] |
|
else: |
|
norm_layer_list = [None] * len(hidden_sizes) |
|
norm_args_list = [None] * len(hidden_sizes) |
|
if activation: |
|
if isinstance(activation, list): |
|
assert len(activation) == len(hidden_sizes) |
|
activation_list = activation |
|
if isinstance(act_args, list): |
|
assert len(act_args) == len(hidden_sizes) |
|
act_args_list = act_args |
|
else: |
|
act_args_list = [act_args for _ in range(len(hidden_sizes))] |
|
else: |
|
activation_list = [activation for _ in range(len(hidden_sizes))] |
|
act_args_list = [act_args for _ in range(len(hidden_sizes))] |
|
else: |
|
activation_list = [None] * len(hidden_sizes) |
|
act_args_list = [None] * len(hidden_sizes) |
|
hidden_sizes = [input_dim, *list(hidden_sizes)] |
|
model = [] |
|
for in_dim, out_dim, norm, norm_args, activ, act_args in zip( |
|
hidden_sizes[:-1], |
|
hidden_sizes[1:], |
|
norm_layer_list, |
|
norm_args_list, |
|
activation_list, |
|
act_args_list, |
|
strict=True, |
|
): |
|
model += miniblock(in_dim, out_dim, norm, norm_args, activ, act_args, linear_layer) |
|
if output_dim > 0: |
|
model += [linear_layer(hidden_sizes[-1], output_dim)] |
|
self.output_dim = output_dim or hidden_sizes[-1] |
|
self.model = nn.Sequential(*model) |
|
self.flatten_input = flatten_input |
|
|
|
@no_type_check |
|
def forward(self, obs: np.ndarray | torch.Tensor) -> torch.Tensor: |
|
obs = torch.as_tensor(obs, device=self.device, dtype=torch.float32) |
|
if self.flatten_input: |
|
obs = obs.flatten(1) |
|
return self.model(obs) |
|
|
|
|
|
TRecurrentState = TypeVar("TRecurrentState", bound=Any) |
|
|
|
|
|
class NetBase(nn.Module, Generic[TRecurrentState], ABC): |
|
"""Interface for NNs used in policies.""" |
|
|
|
@abstractmethod |
|
def forward( |
|
self, |
|
obs: np.ndarray | torch.Tensor, |
|
state: TRecurrentState | None = None, |
|
info: dict[str, Any] | None = None, |
|
) -> tuple[torch.Tensor, TRecurrentState | None]: |
|
pass |
|
|
|
|
|
class Net(NetBase[Any]): |
|
"""Wrapper of MLP to support more specific DRL usage. |
|
|
|
For advanced usage (how to customize the network), please refer to |
|
:ref:`build_the_network`. |
|
|
|
:param state_shape: int or a sequence of int of the shape of state. |
|
:param action_shape: int or a sequence of int of the shape of action. |
|
:param hidden_sizes: shape of MLP passed in as a list. |
|
:param norm_layer: use which normalization before activation, e.g., |
|
``nn.LayerNorm`` and ``nn.BatchNorm1d``. Default to no normalization. |
|
You can also pass a list of normalization modules with the same length |
|
of hidden_sizes, to use different normalization module in different |
|
layers. Default to no normalization. |
|
:param activation: which activation to use after each layer, can be both |
|
the same activation for all layers if passed in nn.Module, or different |
|
activation for different Modules if passed in a list. Default to |
|
nn.ReLU. |
|
:param device: specify the device when the network actually runs. Default |
|
to "cpu". |
|
:param softmax: whether to apply a softmax layer over the last layer's |
|
output. |
|
:param concat: whether the input shape is concatenated by state_shape |
|
and action_shape. If it is True, ``action_shape`` is not the output |
|
shape, but affects the input shape only. |
|
:param num_atoms: in order to expand to the net of distributional RL. |
|
Default to 1 (not use). |
|
:param dueling_param: whether to use dueling network to calculate Q |
|
values (for Dueling DQN). If you want to use dueling option, you should |
|
pass a tuple of two dict (first for Q and second for V) stating |
|
self-defined arguments as stated in |
|
class:`~tianshou.utils.net.common.MLP`. Default to None. |
|
:param linear_layer: use this module constructor, which takes the input |
|
and output dimension as input, as linear layer. Default to nn.Linear. |
|
|
|
.. seealso:: |
|
|
|
Please refer to :class:`~tianshou.utils.net.common.MLP` for more |
|
detailed explanation on the usage of activation, norm_layer, etc. |
|
|
|
You can also refer to :class:`~tianshou.utils.net.continuous.Actor`, |
|
:class:`~tianshou.utils.net.continuous.Critic`, etc, to see how it's |
|
suggested be used. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
state_shape: int | Sequence[int], |
|
action_shape: TActionShape = 0, |
|
hidden_sizes: Sequence[int] = (), |
|
norm_layer: ModuleType | Sequence[ModuleType] | None = None, |
|
norm_args: ArgsType | None = None, |
|
activation: ModuleType | Sequence[ModuleType] | None = nn.ReLU, |
|
act_args: ArgsType | None = None, |
|
device: str | int | torch.device = "cpu", |
|
softmax: bool = False, |
|
concat: bool = False, |
|
num_atoms: int = 1, |
|
dueling_param: tuple[dict[str, Any], dict[str, Any]] | None = None, |
|
linear_layer: TLinearLayer = nn.Linear, |
|
) -> None: |
|
super().__init__() |
|
self.device = device |
|
self.softmax = softmax |
|
self.num_atoms = num_atoms |
|
self.Q: MLP | None = None |
|
self.V: MLP | None = None |
|
|
|
input_dim = int(np.prod(state_shape)) |
|
action_dim = int(np.prod(action_shape)) * num_atoms |
|
if concat: |
|
input_dim += action_dim |
|
self.use_dueling = dueling_param is not None |
|
output_dim = action_dim if not self.use_dueling and not concat else 0 |
|
self.model = MLP( |
|
input_dim, |
|
output_dim, |
|
hidden_sizes, |
|
norm_layer, |
|
norm_args, |
|
activation, |
|
act_args, |
|
device, |
|
linear_layer, |
|
) |
|
if self.use_dueling: |
|
assert dueling_param is not None |
|
kwargs_update = { |
|
"input_dim": self.model.output_dim, |
|
"device": self.device, |
|
} |
|
|
|
q_kwargs = {**dueling_param[0], **kwargs_update} |
|
v_kwargs = {**dueling_param[1], **kwargs_update} |
|
|
|
q_kwargs["output_dim"] = 0 if concat else action_dim |
|
v_kwargs["output_dim"] = 0 if concat else num_atoms |
|
self.Q, self.V = MLP(**q_kwargs), MLP(**v_kwargs) |
|
self.output_dim = self.Q.output_dim |
|
else: |
|
self.output_dim = self.model.output_dim |
|
|
|
def forward( |
|
self, |
|
obs: np.ndarray | torch.Tensor, |
|
state: Any = None, |
|
info: dict[str, Any] | None = None, |
|
) -> tuple[torch.Tensor, Any]: |
|
"""Mapping: obs -> flatten (inside MLP)-> logits. |
|
|
|
:param obs: |
|
:param state: unused and returned as is |
|
:param info: unused |
|
""" |
|
logits = self.model(obs) |
|
batch_size = logits.shape[0] |
|
if self.use_dueling: |
|
assert self.Q is not None |
|
assert self.V is not None |
|
q, v = self.Q(logits), self.V(logits) |
|
if self.num_atoms > 1: |
|
q = q.view(batch_size, -1, self.num_atoms) |
|
v = v.view(batch_size, -1, self.num_atoms) |
|
logits = q - q.mean(dim=1, keepdim=True) + v |
|
elif self.num_atoms > 1: |
|
logits = logits.view(batch_size, -1, self.num_atoms) |
|
if self.softmax: |
|
logits = torch.softmax(logits, dim=-1) |
|
return logits, state |
|
|
|
|
|
class Recurrent(NetBase[RecurrentStateBatch]): |
|
"""Simple Recurrent network based on LSTM. |
|
|
|
For advanced usage (how to customize the network), please refer to |
|
:ref:`build_the_network`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
layer_num: int, |
|
state_shape: int | Sequence[int], |
|
action_shape: TActionShape, |
|
device: str | int | torch.device = "cpu", |
|
hidden_layer_size: int = 128, |
|
) -> None: |
|
super().__init__() |
|
self.device = device |
|
self.nn = nn.LSTM( |
|
input_size=hidden_layer_size, |
|
hidden_size=hidden_layer_size, |
|
num_layers=layer_num, |
|
batch_first=True, |
|
) |
|
self.fc1 = nn.Linear(int(np.prod(state_shape)), hidden_layer_size) |
|
self.fc2 = nn.Linear(hidden_layer_size, int(np.prod(action_shape))) |
|
|
|
def forward( |
|
self, |
|
obs: np.ndarray | torch.Tensor, |
|
state: RecurrentStateBatch | None = None, |
|
info: dict[str, Any] | None = None, |
|
) -> tuple[torch.Tensor, RecurrentStateBatch]: |
|
"""Mapping: obs -> flatten -> logits. |
|
|
|
In the evaluation mode, `obs` should be with shape ``[bsz, dim]``; in the |
|
training mode, `obs` should be with shape ``[bsz, len, dim]``. See the code |
|
and comment for more detail. |
|
|
|
:param obs: |
|
:param state: either None or a dict with keys 'hidden' and 'cell' |
|
:param info: unused |
|
:return: predicted action, next state as dict with keys 'hidden' and 'cell' |
|
""" |
|
|
|
|
|
|
|
if state is not None and not {"hidden", "cell"}.issubset(state.keys()): |
|
raise ValueError( |
|
f"Expected to find keys 'hidden' and 'cell' but instead found {state.keys()}", |
|
) |
|
|
|
obs = torch.as_tensor(obs, device=self.device, dtype=torch.float32) |
|
|
|
|
|
|
|
if len(obs.shape) == 2: |
|
obs = obs.unsqueeze(-2) |
|
obs = self.fc1(obs) |
|
self.nn.flatten_parameters() |
|
if state is None: |
|
obs, (hidden, cell) = self.nn(obs) |
|
else: |
|
|
|
|
|
obs, (hidden, cell) = self.nn( |
|
obs, |
|
( |
|
state["hidden"].transpose(0, 1).contiguous(), |
|
state["cell"].transpose(0, 1).contiguous(), |
|
), |
|
) |
|
obs = self.fc2(obs[:, -1]) |
|
|
|
rnn_state_batch = cast( |
|
RecurrentStateBatch, |
|
Batch( |
|
{ |
|
"hidden": hidden.transpose(0, 1).detach(), |
|
"cell": cell.transpose(0, 1).detach(), |
|
}, |
|
), |
|
) |
|
return obs, rnn_state_batch |
|
|
|
|
|
class ActorCritic(nn.Module): |
|
"""An actor-critic network for parsing parameters. |
|
|
|
Using ``actor_critic.parameters()`` instead of set.union or list+list to avoid |
|
issue #449. |
|
|
|
:param nn.Module actor: the actor network. |
|
:param nn.Module critic: the critic network. |
|
""" |
|
|
|
def __init__(self, actor: nn.Module, critic: nn.Module) -> None: |
|
super().__init__() |
|
self.actor = actor |
|
self.critic = critic |
|
|
|
|
|
class DataParallelNet(nn.Module): |
|
"""DataParallel wrapper for training agent with multi-GPU. |
|
|
|
This class does only the conversion of input data type, from numpy array to torch's |
|
Tensor. If the input is a nested dictionary, the user should create a similar class |
|
to do the same thing. |
|
|
|
:param nn.Module net: the network to be distributed in different GPUs. |
|
""" |
|
|
|
def __init__(self, net: nn.Module) -> None: |
|
super().__init__() |
|
self.net = nn.DataParallel(net) |
|
|
|
def forward( |
|
self, |
|
obs: np.ndarray | torch.Tensor, |
|
*args: Any, |
|
**kwargs: Any, |
|
) -> tuple[Any, Any]: |
|
if not isinstance(obs, torch.Tensor): |
|
obs = torch.as_tensor(obs, dtype=torch.float32) |
|
return self.net(obs=obs.cuda(), *args, **kwargs) |
|
|
|
|
|
class EnsembleLinear(nn.Module): |
|
"""Linear Layer of Ensemble network. |
|
|
|
:param ensemble_size: Number of subnets in the ensemble. |
|
:param in_feature: dimension of the input vector. |
|
:param out_feature: dimension of the output vector. |
|
:param bias: whether to include an additive bias, default to be True. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
ensemble_size: int, |
|
in_feature: int, |
|
out_feature: int, |
|
bias: bool = True, |
|
) -> None: |
|
super().__init__() |
|
|
|
|
|
k = np.sqrt(1.0 / in_feature) |
|
weight_data = torch.rand((ensemble_size, in_feature, out_feature)) * 2 * k - k |
|
self.weight = nn.Parameter(weight_data, requires_grad=True) |
|
|
|
self.bias_weights: nn.Parameter | None = None |
|
if bias: |
|
bias_data = torch.rand((ensemble_size, 1, out_feature)) * 2 * k - k |
|
self.bias_weights = nn.Parameter(bias_data, requires_grad=True) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = torch.matmul(x, self.weight) |
|
if self.bias_weights is not None: |
|
x = x + self.bias_weights |
|
return x |
|
|
|
|
|
|
|
class BranchingNet(NetBase[Any]): |
|
"""Branching dual Q network. |
|
|
|
Network for the BranchingDQNPolicy, it uses a common network module, a value module |
|
and action "branches" one for each dimension.It allows for a linear scaling |
|
of Q-value the output w.r.t. the number of dimensions in the action space. |
|
For more info please refer to: arXiv:1711.08946. |
|
:param state_shape: int or a sequence of int of the shape of state. |
|
:param action_shape: int or a sequence of int of the shape of action. |
|
:param action_peer_branch: int or a sequence of int of the number of actions in |
|
each dimension. |
|
:param common_hidden_sizes: shape of the common MLP network passed in as a list. |
|
:param value_hidden_sizes: shape of the value MLP network passed in as a list. |
|
:param action_hidden_sizes: shape of the action MLP network passed in as a list. |
|
:param norm_layer: use which normalization before activation, e.g., |
|
``nn.LayerNorm`` and ``nn.BatchNorm1d``. Default to no normalization. |
|
You can also pass a list of normalization modules with the same length |
|
of hidden_sizes, to use different normalization module in different |
|
layers. Default to no normalization. |
|
:param activation: which activation to use after each layer, can be both |
|
the same activation for all layers if passed in nn.Module, or different |
|
activation for different Modules if passed in a list. Default to |
|
nn.ReLU. |
|
:param device: specify the device when the network actually runs. Default |
|
to "cpu". |
|
:param softmax: whether to apply a softmax layer over the last layer's |
|
output. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
state_shape: int | Sequence[int], |
|
num_branches: int = 0, |
|
action_per_branch: int = 2, |
|
common_hidden_sizes: list[int] | None = None, |
|
value_hidden_sizes: list[int] | None = None, |
|
action_hidden_sizes: list[int] | None = None, |
|
norm_layer: ModuleType | None = None, |
|
norm_args: ArgsType | None = None, |
|
activation: ModuleType | None = nn.ReLU, |
|
act_args: ArgsType | None = None, |
|
device: str | int | torch.device = "cpu", |
|
) -> None: |
|
super().__init__() |
|
common_hidden_sizes = common_hidden_sizes or [] |
|
value_hidden_sizes = value_hidden_sizes or [] |
|
action_hidden_sizes = action_hidden_sizes or [] |
|
|
|
self.device = device |
|
self.num_branches = num_branches |
|
self.action_per_branch = action_per_branch |
|
|
|
common_input_dim = int(np.prod(state_shape)) |
|
common_output_dim = 0 |
|
self.common = MLP( |
|
common_input_dim, |
|
common_output_dim, |
|
common_hidden_sizes, |
|
norm_layer, |
|
norm_args, |
|
activation, |
|
act_args, |
|
device, |
|
) |
|
|
|
value_input_dim = common_hidden_sizes[-1] |
|
value_output_dim = 1 |
|
self.value = MLP( |
|
value_input_dim, |
|
value_output_dim, |
|
value_hidden_sizes, |
|
norm_layer, |
|
norm_args, |
|
activation, |
|
act_args, |
|
device, |
|
) |
|
|
|
action_input_dim = common_hidden_sizes[-1] |
|
action_output_dim = action_per_branch |
|
self.branches = nn.ModuleList( |
|
[ |
|
MLP( |
|
action_input_dim, |
|
action_output_dim, |
|
action_hidden_sizes, |
|
norm_layer, |
|
norm_args, |
|
activation, |
|
act_args, |
|
device, |
|
) |
|
for _ in range(self.num_branches) |
|
], |
|
) |
|
|
|
def forward( |
|
self, |
|
obs: np.ndarray | torch.Tensor, |
|
state: Any = None, |
|
info: dict[str, Any] | None = None, |
|
) -> tuple[torch.Tensor, Any]: |
|
"""Mapping: obs -> model -> logits.""" |
|
common_out = self.common(obs) |
|
value_out = self.value(common_out) |
|
value_out = torch.unsqueeze(value_out, 1) |
|
action_out = [] |
|
for b in self.branches: |
|
action_out.append(b(common_out)) |
|
action_scores = torch.stack(action_out, 1) |
|
action_scores = action_scores - torch.mean(action_scores, 2, keepdim=True) |
|
logits = value_out + action_scores |
|
return logits, state |
|
|
|
|
|
def get_dict_state_decorator( |
|
state_shape: dict[str, int | Sequence[int]], |
|
keys: Sequence[str], |
|
) -> tuple[Callable, int]: |
|
"""A helper function to make Net or equivalent classes (e.g. Actor, Critic) applicable to dict state. |
|
|
|
The first return item, ``decorator_fn``, will alter the implementation of forward |
|
function of the given class by preprocessing the observation. The preprocessing is |
|
basically flatten the observation and concatenate them based on the ``keys`` order. |
|
The batch dimension is preserved if presented. The result observation shape will |
|
be equal to ``new_state_shape``, the second return item. |
|
|
|
:param state_shape: A dictionary indicating each state's shape |
|
:param keys: A list of state's keys. The flatten observation will be according to |
|
this list order. |
|
:returns: a 2-items tuple ``decorator_fn`` and ``new_state_shape`` |
|
""" |
|
original_shape = state_shape |
|
flat_state_shapes = [] |
|
for k in keys: |
|
flat_state_shapes.append(int(np.prod(state_shape[k]))) |
|
new_state_shape = sum(flat_state_shapes) |
|
|
|
def preprocess_obs(obs: Batch | dict | torch.Tensor | np.ndarray) -> torch.Tensor: |
|
if isinstance(obs, dict) or (isinstance(obs, Batch) and keys[0] in obs): |
|
if original_shape[keys[0]] == obs[keys[0]].shape: |
|
|
|
new_obs = torch.Tensor([obs[k] for k in keys]).flatten() |
|
|
|
else: |
|
bsz = obs[keys[0]].shape[0] |
|
new_obs = torch.cat([torch.Tensor(obs[k].reshape(bsz, -1)) for k in keys], dim=1) |
|
else: |
|
new_obs = torch.Tensor(obs) |
|
return new_obs |
|
|
|
@no_type_check |
|
def decorator_fn(net_class): |
|
class new_net_class(net_class): |
|
def forward(self, obs: np.ndarray | torch.Tensor, *args, **kwargs) -> Any: |
|
return super().forward(preprocess_obs(obs), *args, **kwargs) |
|
|
|
return new_net_class |
|
|
|
return decorator_fn, new_state_shape |
|
|
|
|
|
class BaseActor(nn.Module, ABC): |
|
@abstractmethod |
|
def get_preprocess_net(self) -> nn.Module: |
|
pass |
|
|
|
@abstractmethod |
|
def get_output_dim(self) -> int: |
|
pass |
|
|
|
@abstractmethod |
|
def forward( |
|
self, |
|
obs: np.ndarray | torch.Tensor, |
|
state: Any = None, |
|
info: dict[str, Any] | None = None, |
|
) -> tuple[Any, Any]: |
|
|
|
|
|
pass |
|
|
|
|
|
def getattr_with_matching_alt_value(obj: Any, attr_name: str, alt_value: T | None) -> T: |
|
"""Gets the given attribute from the given object or takes the alternative value if it is not present. |
|
If both are present, they are required to match. |
|
|
|
:param obj: the object from which to obtain the attribute value |
|
:param attr_name: the attribute name |
|
:param alt_value: the alternative value for the case where the attribute is not present, which cannot be None |
|
if the attribute is not present |
|
:return: the value |
|
""" |
|
v = getattr(obj, attr_name) |
|
if v is not None: |
|
if alt_value is not None and v != alt_value: |
|
raise ValueError( |
|
f"Attribute '{attr_name}' of {obj} is defined ({v}) but does not match alt. value ({alt_value})", |
|
) |
|
return v |
|
else: |
|
if alt_value is None: |
|
raise ValueError( |
|
f"Attribute '{attr_name}' of {obj} is not defined and no fallback given", |
|
) |
|
return alt_value |
|
|
|
|
|
def get_output_dim(module: nn.Module, alt_value: int | None) -> int: |
|
"""Retrieves value the `output_dim` attribute of the given module or uses the given alternative value if the attribute is not present. |
|
If both are present, they must match. |
|
|
|
:param module: the module |
|
:param alt_value: the alternative value |
|
:return: the value |
|
""" |
|
return getattr_with_matching_alt_value(module, "output_dim", alt_value) |
|
|