Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import streamlit as st
|
2 |
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
3 |
|
4 |
# Initialize the tokenizer and model
|
@@ -6,40 +5,24 @@ model_name = 'gpt2-large'
|
|
6 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
7 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
8 |
|
9 |
-
# Set the title for the Streamlit app
|
10 |
-
st.title("GPT-2 Blog Post Generator")
|
11 |
-
|
12 |
# Text input for the user
|
13 |
-
text =
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
# Display the generated text
|
34 |
-
st.subheader("Generated Blog Post")
|
35 |
-
st.write(generated_text)
|
36 |
-
except Exception as e:
|
37 |
-
st.error(f"An error occurred: {e}")
|
38 |
-
|
39 |
-
# Add instructions
|
40 |
-
st.write("""
|
41 |
-
Enter a topic or a starting sentence in the text area above, and the GPT-2 model will generate a blog post for you.
|
42 |
-
""")
|
43 |
-
|
44 |
-
# Streamlit instructions
|
45 |
-
st.write("To run this app, use the command: `streamlit run <script_name>.py`")
|
|
|
|
|
1 |
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
2 |
|
3 |
# Initialize the tokenizer and model
|
|
|
5 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
6 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
7 |
|
|
|
|
|
|
|
8 |
# Text input for the user
|
9 |
+
text = "my cat"
|
10 |
+
|
11 |
+
# Encode input text
|
12 |
+
encoded_input = tokenizer(text, return_tensors='pt', padding=True, truncation=True)
|
13 |
+
|
14 |
+
# Generate text
|
15 |
+
output = model.generate(
|
16 |
+
input_ids=encoded_input['input_ids'],
|
17 |
+
attention_mask=encoded_input['attention_mask'],
|
18 |
+
max_length=200, # Adjust length as needed
|
19 |
+
num_return_sequences=1,
|
20 |
+
no_repeat_ngram_size=2,
|
21 |
+
top_p=0.95,
|
22 |
+
top_k=50,
|
23 |
+
pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id
|
24 |
+
)
|
25 |
+
|
26 |
+
# Decode generated text
|
27 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
28 |
+
generated_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|