sabssag's picture
Update app.py
c366b8a verified
raw
history blame
1.02 kB
import streamlit as st
from transformers import T5Tokenizer, TFAutoModelForSeq2SeqLM, pipeline
# Define the path to the saved model
model_path = '/T5_samsum-20240723T171755Z-001.zip'
# Load the tokenizer and model
tokenizer = T5Tokenizer.from_pretrained(model_path)
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_path)
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
# Set the title for the Streamlit app
st.title("T5 Summary Generator")
# Text input for the user
text = st.text_area("Enter your text: ")
def generate_summary(input_text):
# Perform summarization
summary = summarizer(input_text, max_length=200, min_length=40, do_sample=False)
return summary[0]['summary_text']
if st.button("Generate"):
if text:
generated_summary = generate_summary(text)
# Display the generated summary
st.subheader("Generated Summary")
st.write(generated_summary)
else:
st.warning("Please enter some text to generate a summary.")