File size: 13,679 Bytes
d45486e
 
 
 
a5e055b
 
 
 
 
 
 
11cd804
 
 
a5e055b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d45486e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e055b
 
 
 
 
 
 
 
 
bb4d7fc
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e055b
bb4d7fc
 
ccb9319
a5e055b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccb9319
a5e055b
11cd804
4c05f69
bb4d7fc
a5e055b
 
 
11cd804
 
 
 
 
 
 
 
 
 
 
 
7d4688b
11cd804
 
a5e055b
ccb9319
a5e055b
ccb9319
bb4d7fc
ccb9319
 
 
 
bb4d7fc
ccb9319
a5e055b
bb4d7fc
 
a5e055b
 
11cd804
a5e055b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb4d7fc
a5e055b
 
 
 
 
 
4c05f69
 
 
a5e055b
 
 
 
 
 
 
 
 
 
 
 
4c05f69
a5e055b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11cd804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e055b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c05f69
a5e055b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c05f69
a5e055b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
# Import spaces first to avoid CUDA initialization issues
import spaces

# Then import other libraries
import torch
import librosa
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration, AutoModelForCausalLM, AutoProcessor
from gtts import gTTS
import gradio as gr
from PIL import Image
import os
import base64
from io import BytesIO

import io
import subprocess
from langdetect import detect

print("Using GPU for operations when available")

# Install flash-attn
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# Function to safely load pipeline within a GPU-decorated function
@spaces.GPU
def load_pipeline(model_name, **kwargs):
    try:
        device = 0 if torch.cuda.is_available() else "cpu"
        return pipeline(model=model_name, device=device, **kwargs)
    except Exception as e:
        print(f"Error loading {model_name} pipeline: {e}")
        return None

# Load Whisper model for speech recognition within a GPU-decorated function
@spaces.GPU
def load_whisper():
    try:
        device = 0 if torch.cuda.is_available() else "cpu"
        processor = WhisperProcessor.from_pretrained("openai/whisper-small")
        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
        return processor, model
    except Exception as e:
        print(f"Error loading Whisper model: {e}")
        return None, None

# Load sarvam-2b for text generation within a GPU-decorated function
@spaces.GPU
def load_sarvam():
    return load_pipeline('sarvamai/sarvam-2b-v0.5')

# Load Phi-3.5-vision-instruct model
@spaces.GPU
def load_vision_model():
    try:
        model_id = "microsoft/Phi-3.5-vision-instruct"
        model = AutoModelForCausalLM.from_pretrained(
            model_id, trust_remote_code=True, torch_dtype=torch.float16, use_flash_attention_2=False
        )
        processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)
        return model, processor
    except Exception as e:
        print(f"Error loading vision model: {e}")
        return None, None


# Load sarvam-2b for text generation within a GPU-decorated function
@spaces.GPU
def load_sarvam():
    return load_pipeline('sarvamai/sarvam-2b-v0.5')

# Load Phi-3.5-vision-instruct model
@spaces.GPU
def load_vision_model():
    try:
        print("Starting to load vision model...")
        model_id = "microsoft/Phi-3.5-vision-instruct"
        print(f"Loading model from {model_id}")
        model = AutoModelForCausalLM.from_pretrained(
            model_id, 
            trust_remote_code=True, 
            torch_dtype=torch.float16, 
            use_flash_attention_2=False
        )
        print("Model loaded successfully")
        print("Loading processor...")
        processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)
        print("Processor loaded successfully")
        return model, processor
    except Exception as e:
        print(f"Detailed error in loading vision model: {str(e)}")
        return None, None


# Process audio input within a GPU-decorated function
@spaces.GPU
def process_audio_input(audio, whisper_processor, whisper_model):
    if whisper_processor is None or whisper_model is None:
        return "Error: Speech recognition model is not available. Please type your message instead."
    
    try:
        audio, sr = librosa.load(audio, sr=16000)
        input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(whisper_model.device)
        predicted_ids = whisper_model.generate(input_features)
        transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
        return transcription
    except Exception as e:
        return f"Error processing audio: {str(e)}. Please type your message instead."

# Updated process_image_input function
@spaces.GPU
@spaces.GPU
def process_image_input(image, text_prompt, vision_model, processor):
    if vision_model is None or processor is None:
        return "Error: Vision model is not available."
    
    try:
        # Convert image to base64
        if isinstance(image, Image.Image):
            buffered = BytesIO()
            image.save(buffered, format="PNG")
            img_str = base64.b64encode(buffered.getvalue()).decode()
        else:
            # If it's not a PIL Image, assume it's a file path
            with open(image, "rb") as image_file:
                img_str = base64.b64encode(image_file.read()).decode()
        
        # Format the input with image tag
        formatted_prompt = f"{text_prompt}\n<image>data:image/png;base64,{img_str}</image>"
        
        # Process the formatted prompt
        inputs = processor(text=formatted_prompt, return_tensors="pt").to(vision_model.device)
        
        # Generate text
        with torch.no_grad():
            outputs = vision_model.generate(
                **inputs,
                max_new_tokens=100,
                do_sample=True,
                top_k=50,
                top_p=0.95,
                num_return_sequences=1
            )
        
        generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0]
        return generated_text
    except Exception as e:
        return f"Error processing image: {str(e)}"

# Generate response within a GPU-decorated function
@spaces.GPU
def generate_response(transcription, sarvam_pipe):
    if sarvam_pipe is None:
        return "Error: Text generation model is not available."
    
    try:
        # Generate response using the sarvam-2b model
        response = sarvam_pipe(transcription, max_length=100, num_return_sequences=1)[0]['generated_text']
        return response
    except Exception as e:
        return f"Error generating response: {str(e)}"

# Text-to-speech function
def text_to_speech(text, lang='hi'):
    try:
        # Use a better TTS engine for Indic languages
        if lang in ['hi', 'bn', 'gu', 'kn', 'ml', 'mr', 'or', 'pa', 'ta', 'te']:
            # You might want to use a different TTS library here
            # For example, you could use the Google Cloud Text-to-Speech API
            # or a specialized Indic language TTS library
            
            # This is a placeholder for a better Indic TTS solution
            tts = gTTS(text=text, lang=lang, tld='co.in')  # Use Indian TLD
        else:
            tts = gTTS(text=text, lang=lang)
        
        tts.save("response.mp3")
        return "response.mp3"
    except Exception as e:
        print(f"Error in text-to-speech: {str(e)}")
        return None

# Improved language detection function
def detect_language(text):
    lang_codes = {
        'bn': 'Bengali', 'gu': 'Gujarati', 'hi': 'Hindi', 'kn': 'Kannada',
        'ml': 'Malayalam', 'mr': 'Marathi', 'or': 'Oriya', 'pa': 'Punjabi',
        'ta': 'Tamil', 'te': 'Telugu', 'en': 'English'
    }
    
    try:
        detected_lang = detect(text)
        return detected_lang if detected_lang in lang_codes else 'en'
    except:
        # Fallback to simple script-based detection
        for code, lang in lang_codes.items():
            if any(ord(char) >= 0x0900 and ord(char) <= 0x097F for char in text):  # Devanagari script
                return 'hi'
        return 'en'  # Default to English if no Indic script is detected

@spaces.GPU
def indic_vision_assistant(input_type, audio_input, text_input, image_input):
    try:
        whisper_processor, whisper_model = load_whisper()
        sarvam_pipe = load_sarvam()
        vision_model, processor = load_vision_model()

        if input_type == "audio" and audio_input is not None:
            transcription = process_audio_input(audio_input, whisper_processor, whisper_model)
        elif input_type == "text" and text_input:
            transcription = text_input
        elif input_type == "image" and image_input is not None:
            # Use a default prompt if no text input is provided
            text_prompt = text_input if text_input else "Describe this image in detail."
            transcription = process_image_input(image_input, text_prompt, vision_model, processor)
        else:
            return "Please provide either audio, text, or image input.", "No input provided.", None

        response = generate_response(transcription, sarvam_pipe)
        lang = detect_language(response)
        audio_response = text_to_speech(response, lang)
        
        return transcription, response, audio_response
    except Exception as e:
        error_message = f"An error occurred: {str(e)}"
        return error_message, error_message, None


# Custom CSS
custom_css = """
body {
    background-color: #0b0f19;
    color: #e2e8f0;
    font-family: 'Arial', sans-serif;
}
#custom-header {
    text-align: center;
    padding: 20px 0;
    background-color: #1a202c;
    margin-bottom: 20px;
    border-radius: 10px;
}
#custom-header h1 {
    font-size: 2.5rem;
    margin-bottom: 0.5rem;
}
#custom-header h1 .blue {
    color: #60a5fa;
}
#custom-header h1 .pink {
    color: #f472b6;
}
#custom-header h2 {@spaces.GPU
def indic_vision_assistant(input_type, audio_input, text_input, image_input):
    try:
        whisper_processor, whisper_model = load_whisper()
        sarvam_pipe = load_sarvam()
        vision_model, processor = load_vision_model()

        if input_type == "audio" and audio_input is not None:
            transcription = process_audio_input(audio_input, whisper_processor, whisper_model)
        elif input_type == "text" and text_input:
            transcription = text_input
        elif input_type == "image" and image_input is not None:
            # Use a default prompt if no text input is provided
            text_prompt = text_input if text_input else "Describe this image in detail."
            transcription = process_image_input(image_input, text_prompt, vision_model, processor)
        else:
            return "Please provide either audio, text, or image input.", "No input provided.", None

        response = generate_response(transcription, sarvam_pipe)
        lang = detect_language(response)
        audio_response = text_to_speech(response, lang)
        
        return transcription, response, audio_response
    except Exception as e:
        error_message = f"An error occurred: {str(e)}"
        return error_message, error_message, None

    font-size: 1.5rem;
    color: #94a3b8;
}
.suggestions {
    display: flex;
    justify-content: center;
    flex-wrap: wrap;
    gap: 1rem;
    margin: 20px 0;
}
.suggestion {
    background-color: #1e293b;
    border-radius: 0.5rem;
    padding: 1rem;
    display: flex;
    align-items: center;
    transition: transform 0.3s ease;
    width: 200px;
}
.suggestion:hover {
    transform: translateY(-5px);
}
.suggestion-icon {
    font-size: 1.5rem;
    margin-right: 1rem;
    background-color: #2d3748;
    padding: 0.5rem;
    border-radius: 50%;
}
.gradio-container {
    max-width: 100% !important;
}
#component-0, #component-1, #component-2 {
    max-width: 100% !important;
}
footer {
    text-align: center;
    margin-top: 2rem;
    color: #64748b;
}
"""

# Custom HTML for the header
custom_header = """
<div id="custom-header">
    <h1>
        <span class="blue">Hello,</span>
        <span class="pink">User</span>
    </h1>
    <h2>How can I help you today?</h2>
</div>
"""

# Custom HTML for suggestions
custom_suggestions = """
<div class="suggestions">
    <div class="suggestion">
        <span class="suggestion-icon">🎤</span>
        <p>Speak in any Indic language</p>
    </div>
    <div class="suggestion">
        <span class="suggestion-icon">⌨️</span>
        <p>Type in any Indic language</p>
    </div>
    <div class="suggestion">
        <span class="suggestion-icon">🖼️</span>
        <p>Upload an image for analysis</p>
    </div>
    <div class="suggestion">
        <span class="suggestion-icon">🤖</span>
        <p>Get AI-generated responses</p>
    </div>
    <div class="suggestion">
        <span class="suggestion-icon">🔊</span>
        <p>Listen to audio responses</p>
    </div>
</div>
"""
# Update the Gradio interface to allow text input for image processing
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
    body_background_fill="#0b0f19",
    body_text_color="#e2e8f0",
    button_primary_background_fill="#3b82f6",
    button_primary_background_fill_hover="#2563eb",
    button_primary_text_color="white",
    block_title_text_color="#94a3b8",
    block_label_text_color="#94a3b8",
)) as iface:
    gr.HTML(custom_header)
    gr.HTML(custom_suggestions)
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### Indic Vision Assistant")
    
    input_type = gr.Radio(["audio", "text", "image"], label="Input Type", value="audio")
    audio_input = gr.Audio(type="filepath", label="Speak (if audio input selected)")
    text_input = gr.Textbox(label="Type your message or image prompt")
    image_input = gr.Image(type="pil", label="Upload an image (if image input selected)")
    
    submit_btn = gr.Button("Submit")
    
    output_transcription = gr.Textbox(label="Transcription/Input")
    output_response = gr.Textbox(label="Generated Response")
    output_audio = gr.Audio(label="Audio Response")
    
    submit_btn.click(
        fn=indic_vision_assistant,
        inputs=[input_type, audio_input, text_input, image_input],
        outputs=[output_transcription, output_response, output_audio]
    )
    gr.HTML("<footer>Powered by Indic Language AI with Vision Capabilities</footer>")
# Launch the app
iface.launch()