File size: 9,170 Bytes
231fb5f
a5e055b
231fb5f
7e2d83a
231fb5f
45cb2fc
7e2d83a
2796a5e
dfcd89e
 
 
 
2796a5e
231fb5f
2796a5e
a5e055b
231fb5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08a0b8f
 
 
 
9f22f0a
231fb5f
fc8a89a
231fb5f
 
 
 
 
 
 
 
 
 
9f22f0a
231fb5f
 
 
 
9f22f0a
231fb5f
 
 
 
 
 
 
 
fc8a89a
231fb5f
 
 
fc8a89a
231fb5f
9f22f0a
231fb5f
 
08a0b8f
 
 
 
 
 
 
 
 
9f22f0a
 
08a0b8f
9f22f0a
8ce99fe
6f27c43
231fb5f
 
6f27c43
7877f6d
 
 
6f27c43
7877f6d
 
6f27c43
7877f6d
6f27c43
fc8a89a
231fb5f
 
 
 
 
 
fc8a89a
231fb5f
 
 
2b390ac
08a0b8f
d3fde93
 
5fd8357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3fde93
 
231fb5f
5fd8357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08a0b8f
5fd8357
 
 
 
 
 
 
 
 
 
08a0b8f
5fd8357
 
 
 
 
 
 
 
 
 
 
231fb5f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread
import numpy as np
from PIL import Image
import subprocess
import spaces
from parler_tts import ParlerTTSForConditionalGeneration
import soundfile as sf
import tempfile

# Install flash-attention
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# Constants
TITLE = "<h1><center>Phi 3.5 Multimodal (Text + Vision)</center></h1>"
DESCRIPTION = "# Phi-3.5 Multimodal Demo (Text + Vision)"

# Model configurations
TEXT_MODEL_ID = "microsoft/Phi-3.5-mini-instruct"
VISION_MODEL_ID = "microsoft/Phi-3.5-vision-instruct"

device = "cuda" if torch.cuda.is_available() else "cpu"

# Quantization config for text model
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4"
)

# Load models and tokenizers
text_tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_ID)
text_model = AutoModelForCausalLM.from_pretrained(
    TEXT_MODEL_ID,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    quantization_config=quantization_config
)

vision_model = AutoModelForCausalLM.from_pretrained(
    VISION_MODEL_ID, 
    trust_remote_code=True, 
    torch_dtype="auto", 
    attn_implementation="flash_attention_2"
).to(device).eval()

vision_processor = AutoProcessor.from_pretrained(VISION_MODEL_ID, trust_remote_code=True)

# Initialize Parler-TTS
tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device)
tts_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1")

# Helper functions
# Helper functions
@spaces.GPU
def stream_text_chat(message, history, system_prompt, temperature=0.8, max_new_tokens=1024, top_p=1.0, top_k=20):
    conversation = [{"role": "system", "content": system_prompt}]
    for prompt, answer in history:
        conversation.extend([
            {"role": "user", "content": prompt},
            {"role": "assistant", "content": answer},
        ])
    conversation.append({"role": "user", "content": message})

    input_ids = text_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(text_model.device)
    attention_mask = torch.ones_like(input_ids)  # Create attention mask
    streamer = TextIteratorStreamer(text_tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids=input_ids,
        attention_mask=attention_mask,  # Pass attention mask
        max_new_tokens=max_new_tokens,
        do_sample=temperature > 0,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        eos_token_id=[128001, 128008, 128009],
        streamer=streamer,
    )

    with torch.no_grad():
        thread = Thread(target=text_model.generate, kwargs=generate_kwargs)
        thread.start()

    buffer = ""
    audio_buffer = np.array([])
    for new_text in streamer:
        buffer += new_text
        
        # Generate speech for the new text
        tts_input_ids = tts_tokenizer(new_text, return_tensors="pt").input_ids.to(device)
        tts_description = "A clear and natural voice reads the text with moderate speed and expression."
        tts_description_ids = tts_tokenizer(tts_description, return_tensors="pt").input_ids.to(device)
        
        with torch.no_grad():
            audio_generation = tts_model.generate(input_ids=tts_description_ids, prompt_input_ids=tts_input_ids)
        
        new_audio = audio_generation.cpu().numpy().squeeze()
        audio_buffer = np.concatenate((audio_buffer, new_audio))
        
        yield history + [[message, buffer]], (tts_model.config.sampling_rate, audio_buffer)
        
@spaces.GPU
def process_vision_query(image, text_input):
    prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n"
    
    # Ensure the image is in the correct format
    if isinstance(image, np.ndarray):
        # Convert numpy array to PIL Image
        image = Image.fromarray(image).convert("RGB")
    elif not isinstance(image, Image.Image):
        raise ValueError("Invalid image type. Expected PIL.Image.Image or numpy.ndarray")
    
    # Now process the image
    inputs = vision_processor(prompt, images=image, return_tensors="pt").to(device)
    
    with torch.no_grad():
        generate_ids = vision_model.generate(
            **inputs, 
            max_new_tokens=1000, 
            eos_token_id=vision_processor.tokenizer.eos_token_id
        )
    
    generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
    response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
    return response


# Custom CSS
custom_css = """
body { background-color: #0b0f19; color: #e2e8f0; font-family: 'Arial', sans-serif;}
#custom-header { text-align: center; padding: 20px 0; background-color: #1a202c; margin-bottom: 20px; border-radius: 10px;}
#custom-header h1 { font-size: 2.5rem; margin-bottom: 0.5rem;}
#custom-header h1 .blue { color: #60a5fa;}
#custom-header h1 .pink { color: #f472b6;}
#custom-header h2 { font-size: 1.5rem; color: #94a3b8;}
.suggestions { display: flex; justify-content: center; flex-wrap: wrap; gap: 1rem; margin: 20px 0;}
.suggestion { background-color: #1e293b; border-radius: 0.5rem; padding: 1rem; display: flex; align-items: center; transition: transform 0.3s ease; width: 200px;}
.suggestion:hover { transform: translateY(-5px);}
.suggestion-icon { font-size: 1.5rem; margin-right: 1rem; background-color: #2d3748; padding: 0.5rem; border-radius: 50%;}
.gradio-container { max-width: 100% !important;}
#component-0, #component-1, #component-2 { max-width: 100% !important;}
footer { text-align: center; margin-top: 2rem; color: #64748b;}
"""

# Custom HTML for the header
custom_header = """
<div id="custom-header">
    <h1><span class="blue">Phi 3.5</span> <span class="pink">Multimodal Assistant</span></h1>
    <h2>Text and Vision AI at Your Service</h2>
</div>
"""

# Custom HTML for suggestions
custom_suggestions = """
<div class="suggestions">
    <div class="suggestion">
        <span class="suggestion-icon">💬</span>
        <p>Chat with the Text Model</p>
    </div>
    <div class="suggestion">
        <span class="suggestion-icon">🖼️</span>
        <p>Analyze Images with Vision Model</p>
    </div>
    <div class="suggestion">
        <span class="suggestion-icon">🤖</span>
        <p>Get AI-generated responses</p>
    </div>
    <div class="suggestion">
        <span class="suggestion-icon">🔍</span>
        <p>Explore advanced options</p>
    </div>
</div>
"""

# Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
    body_background_fill="#0b0f19",
    body_text_color="#e2e8f0",
    button_primary_background_fill="#3b82f6",
    button_primary_background_fill_hover="#2563eb",
    button_primary_text_color="white",
    block_title_text_color="#94a3b8",
    block_label_text_color="#94a3b8",
)) as demo:
    gr.HTML(custom_header)
    gr.HTML(custom_suggestions)

    with gr.Tab("Text Model (Phi-3.5-mini)"):
        chatbot = gr.Chatbot(height=400)
        msg = gr.Textbox(label="Message", placeholder="Type your message here...")
        audio_output = gr.Audio(label="Generated Speech", autoplay=True)
        with gr.Accordion("Advanced Options", open=False):
            system_prompt = gr.Textbox(value="You are a helpful assistant", label="System Prompt")
            temperature = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature")
            max_new_tokens = gr.Slider(minimum=128, maximum=8192, step=1, value=1024, label="Max new tokens")
            top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p")
            top_k = gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k")
        
        submit_btn = gr.Button("Submit", variant="primary")
        clear_btn = gr.Button("Clear Chat", variant="secondary")

        submit_btn.click(stream_text_chat, [msg, chatbot, system_prompt, temperature, max_new_tokens, top_p, top_k], [chatbot, audio_output])
        clear_btn.click(lambda: None, None, chatbot, queue=False)
    with gr.Tab("Vision Model (Phi-3.5-vision)"):
        with gr.Row():
            with gr.Column(scale=1):
                vision_input_img = gr.Image(label="Upload an Image", type="pil")
                vision_text_input = gr.Textbox(label="Ask a question about the image", placeholder="What do you see in this image?")
                vision_submit_btn = gr.Button("Analyze Image", variant="primary")
            with gr.Column(scale=1):
                vision_output_text = gr.Textbox(label="AI Analysis", lines=10)
        
        vision_submit_btn.click(process_vision_query, [vision_input_img, vision_text_input], [vision_output_text])

    gr.HTML("<footer>Powered by Phi 3.5 Multimodal AI</footer>")

if __name__ == "__main__":
    demo.launch()