Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, TextIteratorStreamer, BitsAndBytesConfig | |
import gradio as gr | |
from threading import Thread | |
from PIL import Image | |
import subprocess | |
import spaces | |
from parler_tts import ParlerTTSForConditionalGeneration | |
import soundfile as sf | |
# Install flash-attention | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
# Constants | |
TITLE = "<h1><center>Phi 3.5 Multimodal (Text + Vision)</center></h1>" | |
DESCRIPTION = "# Phi-3.5 Multimodal Demo (Text + Vision)" | |
# Model configurations | |
TEXT_MODEL_ID = "microsoft/Phi-3.5-mini-instruct" | |
VISION_MODEL_ID = "microsoft/Phi-3.5-vision-instruct" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Quantization config for text model | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.bfloat16, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4" | |
) | |
# Load models and tokenizers | |
text_tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_ID) | |
text_model = AutoModelForCausalLM.from_pretrained( | |
TEXT_MODEL_ID, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
quantization_config=quantization_config | |
) | |
vision_model = AutoModelForCausalLM.from_pretrained( | |
VISION_MODEL_ID, | |
trust_remote_code=True, | |
torch_dtype="auto", | |
attn_implementation="flash_attention_2" | |
).to(device).eval() | |
vision_processor = AutoProcessor.from_pretrained(VISION_MODEL_ID, trust_remote_code=True) | |
# Helper functions | |
def stream_text_chat(message, history, system_prompt, temperature=0.8, max_new_tokens=1024, top_p=1.0, top_k=20): | |
conversation = [{"role": "system", "content": system_prompt}] | |
for prompt, answer in history: | |
conversation.extend([ | |
{"role": "user", "content": prompt}, | |
{"role": "assistant", "content": answer}, | |
]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = text_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(text_model.device) | |
streamer = TextIteratorStreamer(text_tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
max_new_tokens=max_new_tokens, | |
do_sample=temperature > 0, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
eos_token_id=[128001, 128008, 128009], | |
streamer=streamer, | |
) | |
with torch.no_grad(): | |
thread = Thread(target=text_model.generate, kwargs=generate_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
yield history + [[message, buffer]] | |
# Add this decorator | |
def process_vision_query(image, text_input): | |
prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n" | |
image = Image.fromarray(image).convert("RGB") | |
inputs = vision_processor(prompt, image, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
generate_ids = vision_model.generate( | |
**inputs, | |
max_new_tokens=1000, | |
eos_token_id=vision_processor.tokenizer.eos_token_id | |
) | |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] | |
response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
return response | |
# Load Parler-TTS model | |
tts_device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-large-v1").to(tts_device) | |
tts_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-large-v1") | |
def generate_speech(prompt, description): | |
input_ids = tts_tokenizer(description, return_tensors="pt").input_ids.to(tts_device) | |
prompt_input_ids = tts_tokenizer(prompt, return_tensors="pt").input_ids.to(tts_device) | |
generation = tts_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) | |
audio_arr = generation.cpu().numpy().squeeze() | |
output_path = "output_audio.wav" | |
sf.write(output_path, audio_arr, tts_model.config.sampling_rate) | |
return output_path | |
# Custom CSS | |
custom_css = """ | |
body { background-color: #0b0f19; color: #e2e8f0; font-family: 'Arial', sans-serif;} | |
#custom-header { text-align: center; padding: 20px 0; background-color: #1a202c; margin-bottom: 20px; border-radius: 10px;} | |
#custom-header h1 { font-size: 2.5rem; margin-bottom: 0.5rem;} | |
#custom-header h1 .blue { color: #60a5fa;} | |
#custom-header h1 .pink { color: #f472b6;} | |
#custom-header h2 { font-size: 1.5rem; color: #94a3b8;} | |
.suggestions { display: flex; justify-content: center; flex-wrap: wrap; gap: 1rem; margin: 20px 0;} | |
.suggestion { background-color: #1e293b; border-radius: 0.5rem; padding: 1rem; display: flex; align-items: center; transition: transform 0.3s ease; width: 200px;} | |
.suggestion:hover { transform: translateY(-5px);} | |
.suggestion-icon { font-size: 1.5rem; margin-right: 1rem; background-color: #2d3748; padding: 0.5rem; border-radius: 50%;} | |
.gradio-container { max-width: 100% !important;} | |
#component-0, #component-1, #component-2 { max-width: 100% !important;} | |
footer { text-align: center; margin-top: 2rem; color: #64748b;} | |
""" | |
# Custom HTML for the header | |
custom_header = """ | |
<div id="custom-header"> | |
<h1><span class="blue">Phi 3.5</span> <span class="pink">Multimodal Assistant</span></h1> | |
<h2>Text and Vision AI at Your Service</h2> | |
</div> | |
""" | |
# Custom HTML for suggestions | |
custom_suggestions = """ | |
<div class="suggestions"> | |
<div class="suggestion"> | |
<span class="suggestion-icon">π¬</span> | |
<p>Chat with the Text Model</p> | |
</div> | |
<div class="suggestion"> | |
<span class="suggestion-icon">πΌοΈ</span> | |
<p>Analyze Images with Vision Model</p> | |
</div> | |
<div class="suggestion"> | |
<span class="suggestion-icon">π</span> | |
<p>Generate Speech with Parler-TTS</p> | |
</div> | |
<div class="suggestion"> | |
<span class="suggestion-icon">π</span> | |
<p>Explore advanced options</p> | |
</div> | |
</div> | |
""" | |
# Gradio interface | |
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set( | |
body_background_fill="#0b0f19", | |
body_text_color="#e2e8f0", | |
button_primary_background_fill="#3b82f6", | |
button_primary_background_fill_hover="#2563eb", | |
button_primary_text_color="white", | |
block_title_text_color="#94a3b8", | |
block_label_text_color="#94a3b8", | |
)) as demo: | |
gr.HTML(custom_header) | |
gr.HTML(custom_suggestions) | |
with gr.Tab("Text Model (Phi-3.5-mini)"): | |
# ... (previous text model code remains the same) | |
with gr.Tab("Vision Model (Phi-3.5-vision)"): | |
# ... (previous vision model code remains the same) | |
with gr.Tab("Text-to-Speech (Parler-TTS)"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
tts_prompt = gr.Textbox(label="Text to Speak", placeholder="Enter the text you want to convert to speech...") | |
tts_description = gr.Textbox(label="Voice Description", value="A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up.", lines=3) | |
tts_submit_btn = gr.Button("Generate Speech", variant="primary") | |
with gr.Column(scale=1): | |
tts_output_audio = gr.Audio(label="Generated Speech") | |
tts_submit_btn.click(generate_speech, inputs=[tts_prompt, tts_description], outputs=[tts_output_audio]) | |
gr.HTML("<footer>Powered by Phi 3.5 Multimodal AI and Parler-TTS</footer>") | |
if __name__ == "__main__": | |
demo.launch() |