Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,46 +6,42 @@ import gradio as gr
|
|
6 |
from PIL import Image
|
7 |
import logging
|
8 |
import os
|
9 |
-
import spaces
|
10 |
|
11 |
# Set up logging
|
12 |
logging.basicConfig(level=logging.INFO)
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
15 |
-
#
|
16 |
-
|
|
|
17 |
|
18 |
# Function to safely load pipeline
|
19 |
-
@spaces.GPU
|
20 |
def load_pipeline(model_name, **kwargs):
|
21 |
try:
|
22 |
-
return pipeline(model=model_name, device=
|
23 |
except Exception as e:
|
24 |
logger.error(f"Error loading {model_name} pipeline: {e}")
|
25 |
return None
|
26 |
|
27 |
# Load Whisper model for speech recognition
|
28 |
-
@spaces.GPU
|
29 |
def load_whisper():
|
30 |
try:
|
31 |
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
32 |
-
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").
|
33 |
return processor, model
|
34 |
except Exception as e:
|
35 |
logger.error(f"Error loading Whisper model: {e}")
|
36 |
return None, None
|
37 |
|
38 |
# Load sarvam-2b for text generation
|
39 |
-
@spaces.GPU
|
40 |
def load_sarvam():
|
41 |
return load_pipeline('sarvamai/sarvam-2b-v0.5')
|
42 |
|
43 |
# Load vision model
|
44 |
-
@spaces.GPU
|
45 |
def load_vision_model():
|
46 |
try:
|
47 |
model_id = "microsoft/Phi-3.5-vision-instruct"
|
48 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True, torch_dtype="auto", attn_implementation="flash_attention_2").
|
49 |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
50 |
return model, processor
|
51 |
except Exception as e:
|
@@ -53,14 +49,13 @@ def load_vision_model():
|
|
53 |
return None, None
|
54 |
|
55 |
# Process audio input
|
56 |
-
@spaces.GPU
|
57 |
def process_audio_input(audio, whisper_processor, whisper_model):
|
58 |
if whisper_processor is None or whisper_model is None:
|
59 |
return "Error: Speech recognition model is not available. Please type your message instead."
|
60 |
|
61 |
try:
|
62 |
audio, sr = librosa.load(audio, sr=16000)
|
63 |
-
input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.
|
64 |
predicted_ids = whisper_model.generate(input_features)
|
65 |
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
66 |
return transcription
|
@@ -89,7 +84,6 @@ def detect_language(text):
|
|
89 |
# Implement language detection logic here
|
90 |
return 'en' # Default to English for now
|
91 |
|
92 |
-
@spaces.GPU
|
93 |
def generate_response(transcription, sarvam_pipe):
|
94 |
if sarvam_pipe is None:
|
95 |
return "Error: Text generation model is not available."
|
@@ -102,7 +96,6 @@ def generate_response(transcription, sarvam_pipe):
|
|
102 |
logger.error(f"Error generating response: {e}")
|
103 |
return f"Error generating response. Please try again."
|
104 |
|
105 |
-
@spaces.GPU
|
106 |
def process_image(image, text_input, vision_model, vision_processor):
|
107 |
if vision_model is None or vision_processor is None:
|
108 |
return "Error: Vision model is not available."
|
@@ -110,7 +103,7 @@ def process_image(image, text_input, vision_model, vision_processor):
|
|
110 |
try:
|
111 |
prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n"
|
112 |
image = Image.fromarray(image).convert("RGB")
|
113 |
-
inputs = vision_processor(prompt, image, return_tensors="pt").to(
|
114 |
generate_ids = vision_model.generate(**inputs, max_new_tokens=1000, eos_token_id=vision_processor.tokenizer.eos_token_id)
|
115 |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
116 |
response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
@@ -119,7 +112,6 @@ def process_image(image, text_input, vision_model, vision_processor):
|
|
119 |
logger.error(f"Error processing image: {e}")
|
120 |
return f"Error processing image. Please try again."
|
121 |
|
122 |
-
@spaces.GPU
|
123 |
def multimodal_assistant(input_type, audio_input, text_input, image_input):
|
124 |
try:
|
125 |
# Load models
|
|
|
6 |
from PIL import Image
|
7 |
import logging
|
8 |
import os
|
|
|
9 |
|
10 |
# Set up logging
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
14 |
+
# Check for GPU availability
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
logger.info(f"Using device: {device}")
|
17 |
|
18 |
# Function to safely load pipeline
|
|
|
19 |
def load_pipeline(model_name, **kwargs):
|
20 |
try:
|
21 |
+
return pipeline(model=model_name, device=device, **kwargs)
|
22 |
except Exception as e:
|
23 |
logger.error(f"Error loading {model_name} pipeline: {e}")
|
24 |
return None
|
25 |
|
26 |
# Load Whisper model for speech recognition
|
|
|
27 |
def load_whisper():
|
28 |
try:
|
29 |
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
30 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
|
31 |
return processor, model
|
32 |
except Exception as e:
|
33 |
logger.error(f"Error loading Whisper model: {e}")
|
34 |
return None, None
|
35 |
|
36 |
# Load sarvam-2b for text generation
|
|
|
37 |
def load_sarvam():
|
38 |
return load_pipeline('sarvamai/sarvam-2b-v0.5')
|
39 |
|
40 |
# Load vision model
|
|
|
41 |
def load_vision_model():
|
42 |
try:
|
43 |
model_id = "microsoft/Phi-3.5-vision-instruct"
|
44 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True, torch_dtype="auto", attn_implementation="flash_attention_2").to(device).eval()
|
45 |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
46 |
return model, processor
|
47 |
except Exception as e:
|
|
|
49 |
return None, None
|
50 |
|
51 |
# Process audio input
|
|
|
52 |
def process_audio_input(audio, whisper_processor, whisper_model):
|
53 |
if whisper_processor is None or whisper_model is None:
|
54 |
return "Error: Speech recognition model is not available. Please type your message instead."
|
55 |
|
56 |
try:
|
57 |
audio, sr = librosa.load(audio, sr=16000)
|
58 |
+
input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(device)
|
59 |
predicted_ids = whisper_model.generate(input_features)
|
60 |
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
61 |
return transcription
|
|
|
84 |
# Implement language detection logic here
|
85 |
return 'en' # Default to English for now
|
86 |
|
|
|
87 |
def generate_response(transcription, sarvam_pipe):
|
88 |
if sarvam_pipe is None:
|
89 |
return "Error: Text generation model is not available."
|
|
|
96 |
logger.error(f"Error generating response: {e}")
|
97 |
return f"Error generating response. Please try again."
|
98 |
|
|
|
99 |
def process_image(image, text_input, vision_model, vision_processor):
|
100 |
if vision_model is None or vision_processor is None:
|
101 |
return "Error: Vision model is not available."
|
|
|
103 |
try:
|
104 |
prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n"
|
105 |
image = Image.fromarray(image).convert("RGB")
|
106 |
+
inputs = vision_processor(prompt, image, return_tensors="pt").to(device)
|
107 |
generate_ids = vision_model.generate(**inputs, max_new_tokens=1000, eos_token_id=vision_processor.tokenizer.eos_token_id)
|
108 |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
109 |
response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
|
112 |
logger.error(f"Error processing image: {e}")
|
113 |
return f"Error processing image. Please try again."
|
114 |
|
|
|
115 |
def multimodal_assistant(input_type, audio_input, text_input, image_input):
|
116 |
try:
|
117 |
# Load models
|