Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,279 +1,128 @@
|
|
|
|
1 |
import torch
|
2 |
-
import
|
3 |
-
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration, AutoModelForCausalLM, AutoProcessor
|
4 |
-
from gtts import gTTS
|
5 |
import gradio as gr
|
|
|
6 |
from PIL import Image
|
7 |
-
import
|
8 |
-
import os
|
9 |
-
|
10 |
-
# Set up logging
|
11 |
-
logging.basicConfig(level=logging.INFO)
|
12 |
-
logger = logging.getLogger(__name__)
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
logger.info(f"Using device: {device}")
|
17 |
-
|
18 |
-
# Function to safely load pipeline
|
19 |
-
def load_pipeline(model_name, **kwargs):
|
20 |
-
try:
|
21 |
-
return pipeline(model=model_name, device=device, **kwargs)
|
22 |
-
except Exception as e:
|
23 |
-
logger.error(f"Error loading {model_name} pipeline: {e}")
|
24 |
-
return None
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
30 |
-
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
|
31 |
-
return processor, model
|
32 |
-
except Exception as e:
|
33 |
-
logger.error(f"Error loading Whisper model: {e}")
|
34 |
-
return None, None
|
35 |
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
|
40 |
-
|
41 |
-
def load_vision_model():
|
42 |
-
try:
|
43 |
-
model_id = "microsoft/Phi-3.5-vision-instruct"
|
44 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True, torch_dtype="auto", attn_implementation="flash_attention_2").to(device).eval()
|
45 |
-
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
46 |
-
return model, processor
|
47 |
-
except Exception as e:
|
48 |
-
logger.error(f"Error loading vision model: {e}")
|
49 |
-
return None, None
|
50 |
|
51 |
-
#
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
# Use a better TTS engine for Indic languages
|
70 |
-
if lang in ['hi', 'bn', 'gu', 'kn', 'ml', 'mr', 'or', 'pa', 'ta', 'te']:
|
71 |
-
tts = gTTS(text=text, lang=lang, tld='co.in') # Use Indian TLD
|
72 |
-
else:
|
73 |
-
tts = gTTS(text=text, lang=lang)
|
74 |
-
|
75 |
-
output_path = "/tmp/response.mp3"
|
76 |
-
tts.save(output_path)
|
77 |
-
return output_path
|
78 |
-
except Exception as e:
|
79 |
-
logger.error(f"Error in text-to-speech: {e}")
|
80 |
-
return None
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
|
87 |
-
def
|
88 |
-
|
89 |
-
|
|
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
return f"Error generating response. Please try again."
|
98 |
-
|
99 |
-
def process_image(image, text_input, vision_model, vision_processor):
|
100 |
-
if vision_model is None or vision_processor is None:
|
101 |
-
return "Error: Vision model is not available."
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
|
135 |
-
|
136 |
-
except Exception as e:
|
137 |
-
logger.error(f"An error occurred in multimodal_assistant: {e}")
|
138 |
-
return f"An error occurred. Please try again.", None
|
139 |
-
|
140 |
-
# Custom CSS (you can keep your existing custom CSS here)
|
141 |
-
custom_css = """
|
142 |
-
body {
|
143 |
-
background-color: #0b0f19;
|
144 |
-
color: #e2e8f0;
|
145 |
-
font-family: 'Arial', sans-serif;
|
146 |
-
}
|
147 |
-
#custom-header {
|
148 |
-
text-align: center;
|
149 |
-
padding: 20px 0;
|
150 |
-
background-color: #1a202c;
|
151 |
-
margin-bottom: 20px;
|
152 |
-
border-radius: 10px;
|
153 |
-
}
|
154 |
-
#custom-header h1 {
|
155 |
-
font-size: 2.5rem;
|
156 |
-
margin-bottom: 0.5rem;
|
157 |
-
}
|
158 |
-
#custom-header h1 .blue {
|
159 |
-
color: #60a5fa;
|
160 |
-
}
|
161 |
-
#custom-header h1 .pink {
|
162 |
-
color: #f472b6;
|
163 |
-
}
|
164 |
-
#custom-header h2 {
|
165 |
-
font-size: 1.5rem;
|
166 |
-
color: #94a3b8;
|
167 |
-
}
|
168 |
-
.suggestions {
|
169 |
-
display: flex;
|
170 |
-
justify-content: center;
|
171 |
-
flex-wrap: wrap;
|
172 |
-
gap: 1rem;
|
173 |
-
margin: 20px 0;
|
174 |
-
}
|
175 |
-
.suggestion {
|
176 |
-
background-color: #1e293b;
|
177 |
-
border-radius: 0.5rem;
|
178 |
-
padding: 1rem;
|
179 |
-
display: flex;
|
180 |
-
align-items: center;
|
181 |
-
transition: transform 0.3s ease;
|
182 |
-
width: 200px;
|
183 |
-
}
|
184 |
-
.suggestion:hover {
|
185 |
-
transform: translateY(-5px);
|
186 |
-
}
|
187 |
-
.suggestion-icon {
|
188 |
-
font-size: 1.5rem;
|
189 |
-
margin-right: 1rem;
|
190 |
-
background-color: #2d3748;
|
191 |
-
padding: 0.5rem;
|
192 |
-
border-radius: 50%;
|
193 |
-
}
|
194 |
-
.gradio-container {
|
195 |
-
max-width: 100% !important;
|
196 |
-
}
|
197 |
-
#component-0, #component-1, #component-2 {
|
198 |
-
max-width: 100% !important;
|
199 |
-
}
|
200 |
-
footer {
|
201 |
-
text-align: center;
|
202 |
-
margin-top: 2rem;
|
203 |
-
color: #64748b;
|
204 |
-
}
|
205 |
-
"""
|
206 |
-
|
207 |
-
# Custom HTML for the header (you can keep your existing custom header here)
|
208 |
-
custom_header = """
|
209 |
-
<div id="custom-header">
|
210 |
-
<h1>
|
211 |
-
<span class="blue">Multimodal</span>
|
212 |
-
<span class="pink">Indic Assistant</span>
|
213 |
-
</h1>
|
214 |
-
<h2>How can I help you today?</h2>
|
215 |
-
</div>
|
216 |
-
"""
|
217 |
-
|
218 |
-
# Custom HTML for suggestions
|
219 |
-
custom_suggestions = """
|
220 |
-
<div class="suggestions">
|
221 |
-
<div class="suggestion">
|
222 |
-
<span class="suggestion-icon">🎤</span>
|
223 |
-
<p>Speak in any Indic language</p>
|
224 |
-
</div>
|
225 |
-
<div class="suggestion">
|
226 |
-
<span class="suggestion-icon">⌨️</span>
|
227 |
-
<p>Type in any Indic language</p>
|
228 |
-
</div>
|
229 |
-
<div class="suggestion">
|
230 |
-
<span class="suggestion-icon">📷</span>
|
231 |
-
<p>Upload an image for analysis</p>
|
232 |
-
</div>
|
233 |
-
<div class="suggestion">
|
234 |
-
<span class="suggestion-icon">🤖</span>
|
235 |
-
<p>Get AI-generated responses</p>
|
236 |
-
</div>
|
237 |
-
<div class="suggestion">
|
238 |
-
<span class="suggestion-icon">🔊</span>
|
239 |
-
<p>Listen to audio responses</p>
|
240 |
-
</div>
|
241 |
-
</div>
|
242 |
-
"""
|
243 |
-
|
244 |
-
# Create Gradio interface
|
245 |
-
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
|
246 |
-
body_background_fill="#0b0f19",
|
247 |
-
body_text_color="#e2e8f0",
|
248 |
-
button_primary_background_fill="#3b82f6",
|
249 |
-
button_primary_background_fill_hover="#2563eb",
|
250 |
-
button_primary_text_color="white",
|
251 |
-
block_title_text_color="#94a3b8",
|
252 |
-
block_label_text_color="#94a3b8",
|
253 |
-
)) as iface:
|
254 |
-
gr.HTML(custom_header)
|
255 |
-
gr.HTML(custom_suggestions)
|
256 |
-
|
257 |
-
with gr.Row():
|
258 |
-
with gr.Column(scale=1):
|
259 |
-
gr.Markdown("### Multimodal Indic Assistant")
|
260 |
-
|
261 |
-
input_type = gr.Radio(["audio", "text", "image"], label="Input Type", value="audio")
|
262 |
-
audio_input = gr.Audio(type="filepath", label="Speak (if audio input selected)")
|
263 |
-
text_input = gr.Textbox(label="Type your message or image question")
|
264 |
-
image_input = gr.Image(label="Upload an image (if image input selected)")
|
265 |
-
|
266 |
-
submit_btn = gr.Button("Submit")
|
267 |
-
|
268 |
-
output_response = gr.Textbox(label="Generated Response")
|
269 |
-
output_audio = gr.Audio(label="Audio Response")
|
270 |
-
|
271 |
-
submit_btn.click(
|
272 |
-
fn=multimodal_assistant,
|
273 |
-
inputs=[input_type, audio_input, text_input, image_input],
|
274 |
-
outputs=[output_response, output_audio]
|
275 |
-
)
|
276 |
-
gr.HTML("<footer>Powered by Multimodal Indic Language AI</footer>")
|
277 |
|
278 |
-
|
279 |
-
|
|
|
1 |
+
import os
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, TextIteratorStreamer, BitsAndBytesConfig
|
|
|
|
|
4 |
import gradio as gr
|
5 |
+
from threading import Thread
|
6 |
from PIL import Image
|
7 |
+
import subprocess
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Install flash-attention
|
10 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Constants
|
13 |
+
TITLE = "<h1><center>Phi 3.5 Multimodal (Text + Vision)</center></h1>"
|
14 |
+
DESCRIPTION = "# Phi-3.5 Multimodal Demo (Text + Vision)"
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Model configurations
|
17 |
+
TEXT_MODEL_ID = "microsoft/Phi-3.5-mini-instruct"
|
18 |
+
VISION_MODEL_ID = "microsoft/Phi-3.5-vision-instruct"
|
19 |
|
20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# Quantization config for text model
|
23 |
+
quantization_config = BitsAndBytesConfig(
|
24 |
+
load_in_4bit=True,
|
25 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
26 |
+
bnb_4bit_use_double_quant=True,
|
27 |
+
bnb_4bit_quant_type="nf4"
|
28 |
+
)
|
29 |
+
|
30 |
+
# Load models and tokenizers
|
31 |
+
text_tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_ID)
|
32 |
+
text_model = AutoModelForCausalLM.from_pretrained(
|
33 |
+
TEXT_MODEL_ID,
|
34 |
+
torch_dtype=torch.bfloat16,
|
35 |
+
device_map="auto",
|
36 |
+
quantization_config=quantization_config
|
37 |
+
)
|
38 |
+
|
39 |
+
vision_model = AutoModelForCausalLM.from_pretrained(
|
40 |
+
VISION_MODEL_ID,
|
41 |
+
trust_remote_code=True,
|
42 |
+
torch_dtype="auto",
|
43 |
+
attn_implementation="flash_attention_2"
|
44 |
+
).to(device).eval()
|
45 |
+
|
46 |
+
vision_processor = AutoProcessor.from_pretrained(VISION_MODEL_ID, trust_remote_code=True)
|
47 |
+
|
48 |
+
# Helper functions
|
49 |
+
def stream_text_chat(message, history, system_prompt, temperature=0.8, max_new_tokens=1024, top_p=1.0, top_k=20):
|
50 |
+
conversation = [{"role": "system", "content": system_prompt}]
|
51 |
+
for prompt, answer in history:
|
52 |
+
conversation.extend([
|
53 |
+
{"role": "user", "content": prompt},
|
54 |
+
{"role": "assistant", "content": answer},
|
55 |
+
])
|
56 |
+
conversation.append({"role": "user", "content": message})
|
57 |
+
|
58 |
+
input_ids = text_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(text_model.device)
|
59 |
+
streamer = TextIteratorStreamer(text_tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
60 |
+
|
61 |
+
generate_kwargs = dict(
|
62 |
+
input_ids=input_ids,
|
63 |
+
max_new_tokens=max_new_tokens,
|
64 |
+
do_sample=temperature > 0,
|
65 |
+
top_p=top_p,
|
66 |
+
top_k=top_k,
|
67 |
+
temperature=temperature,
|
68 |
+
eos_token_id=[128001, 128008, 128009],
|
69 |
+
streamer=streamer,
|
70 |
+
)
|
71 |
|
72 |
+
with torch.no_grad():
|
73 |
+
thread = Thread(target=text_model.generate, kwargs=generate_kwargs)
|
74 |
+
thread.start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
buffer = ""
|
77 |
+
for new_text in streamer:
|
78 |
+
buffer += new_text
|
79 |
+
yield buffer
|
80 |
|
81 |
+
def process_vision_query(image, text_input):
|
82 |
+
prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n"
|
83 |
+
image = Image.fromarray(image).convert("RGB")
|
84 |
+
inputs = vision_processor(prompt, image, return_tensors="pt").to(device)
|
85 |
|
86 |
+
with torch.no_grad():
|
87 |
+
generate_ids = vision_model.generate(
|
88 |
+
**inputs,
|
89 |
+
max_new_tokens=1000,
|
90 |
+
eos_token_id=vision_processor.tokenizer.eos_token_id
|
91 |
+
)
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
94 |
+
response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
95 |
+
return response
|
96 |
+
|
97 |
+
# Gradio interface
|
98 |
+
with gr.Blocks() as demo:
|
99 |
+
gr.HTML(TITLE)
|
100 |
+
gr.Markdown(DESCRIPTION)
|
101 |
+
|
102 |
+
with gr.Tab("Text Model (Phi-3.5-mini)"):
|
103 |
+
chatbot = gr.Chatbot(height=600)
|
104 |
+
gr.ChatInterface(
|
105 |
+
fn=stream_text_chat,
|
106 |
+
chatbot=chatbot,
|
107 |
+
additional_inputs=[
|
108 |
+
gr.Textbox(value="You are a helpful assistant", label="System Prompt"),
|
109 |
+
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature"),
|
110 |
+
gr.Slider(minimum=128, maximum=8192, step=1, value=1024, label="Max new tokens"),
|
111 |
+
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p"),
|
112 |
+
gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k"),
|
113 |
+
],
|
114 |
+
)
|
115 |
+
|
116 |
+
with gr.Tab("Vision Model (Phi-3.5-vision)"):
|
117 |
+
with gr.Row():
|
118 |
+
with gr.Column():
|
119 |
+
vision_input_img = gr.Image(label="Input Picture")
|
120 |
+
vision_text_input = gr.Textbox(label="Question")
|
121 |
+
vision_submit_btn = gr.Button(value="Submit")
|
122 |
+
with gr.Column():
|
123 |
+
vision_output_text = gr.Textbox(label="Output Text")
|
124 |
|
125 |
+
vision_submit_btn.click(process_vision_query, [vision_input_img, vision_text_input], [vision_output_text])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
if __name__ == "__main__":
|
128 |
+
demo.launch()
|