SegmentVision / app.py
sagar007's picture
Update app.py
03c5849 verified
raw
history blame
16.7 kB
import gradio as gr
import torch
from transformers import AutoProcessor, AutoModel
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import random
import os
import wget
import traceback
# --- Configuration & Model Loading ---
# Device Selection with fallback
DEVICE = "cuda" if torch.cuda.is_available() and torch.cuda.current_device() >= 0 else "cpu"
print(f"Using device: {DEVICE}")
# --- CLIP Setup ---
CLIP_MODEL_ID = "openai/clip-vit-base-patch32"
clip_processor = None
clip_model = None
def load_clip_model():
global clip_processor, clip_model
if clip_processor is None:
try:
print(f"Loading CLIP processor: {CLIP_MODEL_ID}...")
clip_processor = AutoProcessor.from_pretrained(CLIP_MODEL_ID)
print("CLIP processor loaded.")
except Exception as e:
print(f"Error loading CLIP processor: {e}")
return False
if clip_model is None:
try:
print(f"Loading CLIP model: {CLIP_MODEL_ID}...")
clip_model = AutoModel.from_pretrained(CLIP_MODEL_ID).to(DEVICE)
print(f"CLIP model loaded to {DEVICE}.")
except Exception as e:
print(f"Error loading CLIP model: {e}")
return False
return True
# --- FastSAM Setup ---
FASTSAM_CHECKPOINT = "FastSAM-s.pt"
FASTSAM_CHECKPOINT_URL = f"https://huggingface.co/CASIA-IVA-Lab/FastSAM-s/resolve/main/{FASTSAM_CHECKPOINT}"
fastsam_model = None
fastsam_lib_imported = False
def check_and_import_fastsam():
global fastsam_lib_imported
if not fastsam_lib_imported:
try:
from fastsam import FastSAM, FastSAMPrompt
globals()['FastSAM'] = FastSAM
globals()['FastSAMPrompt'] = FastSAMPrompt
fastsam_lib_imported = True
print("fastsam library imported successfully.")
except ImportError as e:
print(f"Error: 'fastsam' library not found. Install with 'pip install fastsam': {e}")
fastsam_lib_imported = False
except Exception as e:
print(f"Unexpected error during fastsam import: {e}")
traceback.print_exc()
fastsam_lib_imported = False
return fastsam_lib_imported
def download_fastsam_weights(retries=3):
if not os.path.exists(FASTSAM_CHECKPOINT):
print(f"Downloading FastSAM weights: {FASTSAM_CHECKPOINT} from {FASTSAM_CHECKPOINT_URL}...")
for attempt in range(retries):
try:
wget.download(FASTSAM_CHECKPOINT_URL, FASTSAM_CHECKPOINT)
print("FastSAM weights downloaded.")
break
except Exception as e:
print(f"Attempt {attempt + 1}/{retries} failed: {e}")
if attempt + 1 == retries:
print("Failed to download weights after all attempts.")
return False
return os.path.exists(FASTSAM_CHECKPOINT)
def load_fastsam_model():
global fastsam_model
if fastsam_model is None:
if not check_and_import_fastsam():
print("Cannot load FastSAM model due to library import failure.")
return False
if download_fastsam_weights():
try:
print(f"Loading FastSAM model: {FASTSAM_CHECKPOINT}...")
fastsam_model = FastSAM(FASTSAM_CHECKPOINT)
print("FastSAM model loaded.")
return True
except Exception as e:
print(f"Error loading FastSAM model: {e}")
traceback.print_exc()
return False
else:
print("FastSAM weights not found or download failed.")
return False
return True
# --- Processing Functions ---
def run_clip_zero_shot(image: Image.Image, text_labels: str):
if clip_model is None or clip_processor is None:
if not load_clip_model():
return "Error: CLIP Model could not be loaded.", None
if image is None:
return "Please upload an image.", None
if not text_labels:
return {}, image
labels = [label.strip() for label in text_labels.split(',') if label.strip()]
if not labels:
return {}, image
print(f"Running CLIP zero-shot classification with labels: {labels}")
try:
if image.mode != "RGB":
image = image.convert("RGB")
inputs = clip_processor(text=labels, images=image, return_tensors="pt", padding=True).to(DEVICE)
with torch.no_grad():
outputs = clip_model(**inputs)
probs = outputs.logits_per_image.softmax(dim=1)
confidences = {labels[i]: float(probs[0, i].item()) for i in range(len(labels))}
return confidences, image
except Exception as e:
print(f"Error during CLIP processing: {e}")
traceback.print_exc()
return f"Error: {e}", image
def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
if not load_fastsam_model() or not fastsam_lib_imported:
return "Error: FastSAM not loaded or library unavailable."
if image_pil is None:
return "Please upload an image."
print("Running FastSAM 'segment everything'...")
try:
if image_pil.mode != "RGB":
image_pil = image_pil.convert("RGB")
image_np_rgb = np.array(image_pil)
everything_results = fastsam_model(
image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640,
conf=conf_threshold, iou=iou_threshold, verbose=True
)
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
ann = prompt_process.everything_prompt()
output_image = image_pil.copy()
if ann and ann[0] and 'masks' in ann[0] and len(ann[0]['masks']) > 0:
masks = ann[0]['masks'].cpu().numpy()
print(f"Found {len(masks)} masks with shape: {masks.shape}")
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
for mask in masks:
mask = (mask > 0).astype(np.uint8) * 255
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180)
mask_image = Image.fromarray(mask, mode='L')
draw.bitmap((0, 0), mask_image, fill=color)
output_image = Image.alpha_composite(output_image.convert('RGBA'), overlay).convert('RGB')
else:
print("No masks detected in 'segment everything' mode.")
return output_image
except Exception as e:
print(f"Error during FastSAM 'everything' processing: {e}")
traceback.print_exc()
return f"Error: {e}"
def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
if not load_fastsam_model():
return "Error: FastSAM Model not loaded.", "Model load failure."
if not fastsam_lib_imported:
return "Error: FastSAM library not available.", "Library import error."
if image_pil is None:
return "Please upload an image.", "No image provided."
if not text_prompts:
return image_pil, "Please enter text prompts (e.g., 'person, dog')."
prompts = [p.strip() for p in text_prompts.split(',') if p.strip()]
if not prompts:
return image_pil, "No valid text prompts entered."
print(f"Running FastSAM text-prompted segmentation for: {prompts}")
try:
if image_pil.mode != "RGB":
image_pil = image_pil.convert("RGB")
image_np_rgb = np.array(image_pil)
everything_results = fastsam_model(
image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640,
conf=conf_threshold, iou=iou_threshold, verbose=True
)
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
all_matching_masks = []
found_prompts = []
for text in prompts:
print(f" Processing prompt: '{text}'")
ann = prompt_process.text_prompt(text=text)
if ann and ann[0] and 'masks' in ann[0] and len(ann[0]['masks']) > 0:
num_found = len(ann[0]['masks'])
print(f" Found {num_found} mask(s) with shape: {ann[0]['masks'].shape}")
found_prompts.append(f"{text} ({num_found})")
masks = ann[0]['masks'].cpu().numpy()
all_matching_masks.extend(masks)
else:
print(f" No masks found for '{text}'.")
found_prompts.append(f"{text} (0)")
output_image = image_pil.copy()
status_message = f"Found segments for: {', '.join(found_prompts)}" if found_prompts else "No matches found."
if all_matching_masks:
masks_np = np.stack(all_matching_masks, axis=0)
print(f"Total masks stacked: {masks_np.shape}")
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
for mask in masks_np:
mask = (mask > 0).astype(np.uint8) * 255
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180)
mask_image = Image.fromarray(mask, mode='L')
draw.bitmap((0, 0), mask_image, fill=color)
output_image = Image.alpha_composite(output_image.convert('RGBA'), overlay).convert('RGB')
return output_image, status_message
except Exception as e:
print(f"Error during FastSAM text-prompted processing: {e}")
traceback.print_exc()
return image_pil, f"Error: {e}"
# --- Gradio Interface ---
print("Attempting to preload models...")
load_fastsam_model() # Load FastSAM eagerly
print("Preloading finished.")
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# CLIP & FastSAM Demo")
gr.Markdown("Explore Zero-Shot Classification, 'Segment Everything', and Text-Prompted Segmentation.")
with gr.Tabs():
with gr.TabItem("CLIP Zero-Shot Classification"):
gr.Markdown("Upload an image and provide comma-separated labels (e.g., 'cat, dog, car').")
with gr.Row():
with gr.Column(scale=1):
clip_input_image = gr.Image(type="pil", label="Input Image")
clip_text_labels = gr.Textbox(label="Comma-Separated Labels", placeholder="e.g., astronaut, moon")
clip_button = gr.Button("Run CLIP Classification", variant="primary")
with gr.Column(scale=1):
clip_output_label = gr.Label(label="Classification Probabilities")
clip_output_image_display = gr.Image(type="pil", label="Input Image Preview")
clip_button.click(
run_clip_zero_shot,
inputs=[clip_input_image, clip_text_labels],
outputs=[clip_output_label, clip_output_image_display]
)
gr.Examples(
examples=[
["examples/astronaut.jpg", "astronaut, moon, rover"],
["examples/dog_bike.jpg", "dog, bicycle, person"],
["examples/clip_logo.png", "logo, text, graphics"],
],
inputs=[clip_input_image, clip_text_labels],
outputs=[clip_output_label, clip_output_image_display],
fn=run_clip_zero_shot,
cache_examples=False,
)
with gr.TabItem("FastSAM Segment Everything"):
gr.Markdown("Upload an image to segment all objects/regions.")
with gr.Row():
with gr.Column(scale=1):
fastsam_input_image_all = gr.Image(type="pil", label="Input Image")
with gr.Row():
fastsam_conf_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
fastsam_iou_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
fastsam_button_all = gr.Button("Run FastSAM Segmentation", variant="primary")
with gr.Column(scale=1):
fastsam_output_image_all = gr.Image(type="pil", label="Segmented Image")
fastsam_button_all.click(
run_fastsam_segmentation,
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
outputs=[fastsam_output_image_all]
)
gr.Examples(
examples=[
["examples/dogs.jpg", 0.4, 0.9],
["examples/fruits.jpg", 0.5, 0.8],
["examples/lion.jpg", 0.45, 0.9],
],
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
outputs=[fastsam_output_image_all],
fn=run_fastsam_segmentation,
cache_examples=False,
)
with gr.TabItem("Text-Prompted Segmentation"):
gr.Markdown("Upload an image and provide comma-separated prompts (e.g., 'person, dog').")
with gr.Row():
with gr.Column(scale=1):
prompt_input_image = gr.Image(type="pil", label="Input Image")
prompt_text_input = gr.Textbox(label="Comma-Separated Text Prompts", placeholder="e.g., glasses, watch")
with gr.Row():
prompt_conf = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
prompt_iou = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
prompt_button = gr.Button("Segment by Text", variant="primary")
with gr.Column(scale=1):
prompt_output_image = gr.Image(type="pil", label="Text-Prompted Segmentation")
prompt_status_message = gr.Textbox(label="Status", interactive=False)
prompt_button.click(
run_text_prompted_segmentation,
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
outputs=[prompt_output_image, prompt_status_message]
)
gr.Examples(
examples=[
["examples/dog_bike.jpg", "person, bicycle", 0.4, 0.9],
["examples/astronaut.jpg", "person, helmet", 0.35, 0.9],
["examples/dogs.jpg", "dog", 0.4, 0.9],
["examples/fruits.jpg", "banana, apple", 0.5, 0.8],
["examples/teacher.jpg", "person, glasses", 0.4, 0.9],
],
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
outputs=[prompt_output_image, prompt_status_message],
fn=run_text_prompted_segmentation,
cache_examples=False,
)
# Download example images with retries
if not os.path.exists("examples"):
os.makedirs("examples")
print("Created 'examples' directory.")
example_files = {
"astronaut.jpg": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Astronaut_-_St._Jean_Bay.jpg/640px-Astronaut_-_St._Jean_Bay.jpg",
"dog_bike.jpg": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gradio/outputs_multimodal.jpg",
"clip_logo.png": "https://raw.githubusercontent.com/openai/CLIP/main/CLIP.png",
"dogs.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image8.jpg",
"fruits.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image9.jpg",
"lion.jpg": "https://huggingface.co/spaces/gradio/image-segmentation/resolve/main/images/lion.jpg",
"teacher.jpg": "https://images.pexels.com/photos/848117/pexels-photo-848117.jpeg?auto=compress&cs=tinysrgb&w=600"
}
def download_example_file(filename, url, retries=3):
filepath = os.path.join("examples", filename)
if not os.path.exists(filepath):
for attempt in range(retries):
try:
print(f"Downloading {filename} (attempt {attempt + 1}/{retries})...")
wget.download(url, filepath)
break
except Exception as e:
print(f"Attempt {attempt + 1} failed: {e}")
if attempt + 1 == retries:
print(f"Failed to download {filename} after {retries} attempts.")
for filename, url in example_files.items():
download_example_file(filename, url)
if __name__ == "__main__":
demo.launch(debug=True)