Spaces:
Sleeping
Sleeping
File size: 16,745 Bytes
dfdcd97 a3ee867 03c5849 b066832 fd55cab b066832 eefe5b4 03c5849 b066832 03c5849 b066832 03c5849 b066832 23fa119 03c5849 b066832 23fa119 03c5849 b066832 eba2946 b066832 03c5849 eba2946 03c5849 eba2946 03c5849 eba2946 03c5849 23fa119 eba2946 03c5849 b066832 eba2946 03c5849 b066832 23fa119 03c5849 23fa119 b066832 03c5849 b066832 eba2946 03c5849 b066832 03c5849 3cd1243 b066832 6facde6 b066832 23fa119 03c5849 6facde6 23fa119 03c5849 6facde6 b066832 03c5849 b066832 23fa119 b066832 eba2946 6facde6 b066832 eba2946 03c5849 6facde6 b066832 03c5849 23fa119 03c5849 23fa119 eba2946 23fa119 03c5849 23fa119 03c5849 23fa119 03c5849 23fa119 03c5849 23fa119 03c5849 23fa119 03c5849 23fa119 03c5849 23fa119 03c5849 b066832 23fa119 03c5849 e0d4d2f 23fa119 3d6a9c7 b066832 72f4c5c b066832 23fa119 03c5849 b066832 23fa119 03c5849 23fa119 03c5849 23fa119 03c5849 23fa119 03c5849 23fa119 b066832 03c5849 6facde6 03c5849 23fa119 eefe5b4 23fa119 eba2946 03c5849 6facde6 e0d4d2f b066832 03c5849 b066832 23fa119 b066832 03c5849 b066832 03c5849 b066832 eba2946 b066832 03c5849 b066832 03c5849 eefe5b4 6facde6 23fa119 03c5849 23fa119 03c5849 b066832 23fa119 03c5849 23fa119 b066832 23fa119 03c5849 23fa119 03c5849 b066832 23fa119 03c5849 23fa119 03c5849 b066832 23fa119 eba2946 b066832 6facde6 03c5849 b066832 03c5849 b066832 03c5849 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import gradio as gr
import torch
from transformers import AutoProcessor, AutoModel
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import random
import os
import wget
import traceback
# --- Configuration & Model Loading ---
# Device Selection with fallback
DEVICE = "cuda" if torch.cuda.is_available() and torch.cuda.current_device() >= 0 else "cpu"
print(f"Using device: {DEVICE}")
# --- CLIP Setup ---
CLIP_MODEL_ID = "openai/clip-vit-base-patch32"
clip_processor = None
clip_model = None
def load_clip_model():
global clip_processor, clip_model
if clip_processor is None:
try:
print(f"Loading CLIP processor: {CLIP_MODEL_ID}...")
clip_processor = AutoProcessor.from_pretrained(CLIP_MODEL_ID)
print("CLIP processor loaded.")
except Exception as e:
print(f"Error loading CLIP processor: {e}")
return False
if clip_model is None:
try:
print(f"Loading CLIP model: {CLIP_MODEL_ID}...")
clip_model = AutoModel.from_pretrained(CLIP_MODEL_ID).to(DEVICE)
print(f"CLIP model loaded to {DEVICE}.")
except Exception as e:
print(f"Error loading CLIP model: {e}")
return False
return True
# --- FastSAM Setup ---
FASTSAM_CHECKPOINT = "FastSAM-s.pt"
FASTSAM_CHECKPOINT_URL = f"https://huggingface.co/CASIA-IVA-Lab/FastSAM-s/resolve/main/{FASTSAM_CHECKPOINT}"
fastsam_model = None
fastsam_lib_imported = False
def check_and_import_fastsam():
global fastsam_lib_imported
if not fastsam_lib_imported:
try:
from fastsam import FastSAM, FastSAMPrompt
globals()['FastSAM'] = FastSAM
globals()['FastSAMPrompt'] = FastSAMPrompt
fastsam_lib_imported = True
print("fastsam library imported successfully.")
except ImportError as e:
print(f"Error: 'fastsam' library not found. Install with 'pip install fastsam': {e}")
fastsam_lib_imported = False
except Exception as e:
print(f"Unexpected error during fastsam import: {e}")
traceback.print_exc()
fastsam_lib_imported = False
return fastsam_lib_imported
def download_fastsam_weights(retries=3):
if not os.path.exists(FASTSAM_CHECKPOINT):
print(f"Downloading FastSAM weights: {FASTSAM_CHECKPOINT} from {FASTSAM_CHECKPOINT_URL}...")
for attempt in range(retries):
try:
wget.download(FASTSAM_CHECKPOINT_URL, FASTSAM_CHECKPOINT)
print("FastSAM weights downloaded.")
break
except Exception as e:
print(f"Attempt {attempt + 1}/{retries} failed: {e}")
if attempt + 1 == retries:
print("Failed to download weights after all attempts.")
return False
return os.path.exists(FASTSAM_CHECKPOINT)
def load_fastsam_model():
global fastsam_model
if fastsam_model is None:
if not check_and_import_fastsam():
print("Cannot load FastSAM model due to library import failure.")
return False
if download_fastsam_weights():
try:
print(f"Loading FastSAM model: {FASTSAM_CHECKPOINT}...")
fastsam_model = FastSAM(FASTSAM_CHECKPOINT)
print("FastSAM model loaded.")
return True
except Exception as e:
print(f"Error loading FastSAM model: {e}")
traceback.print_exc()
return False
else:
print("FastSAM weights not found or download failed.")
return False
return True
# --- Processing Functions ---
def run_clip_zero_shot(image: Image.Image, text_labels: str):
if clip_model is None or clip_processor is None:
if not load_clip_model():
return "Error: CLIP Model could not be loaded.", None
if image is None:
return "Please upload an image.", None
if not text_labels:
return {}, image
labels = [label.strip() for label in text_labels.split(',') if label.strip()]
if not labels:
return {}, image
print(f"Running CLIP zero-shot classification with labels: {labels}")
try:
if image.mode != "RGB":
image = image.convert("RGB")
inputs = clip_processor(text=labels, images=image, return_tensors="pt", padding=True).to(DEVICE)
with torch.no_grad():
outputs = clip_model(**inputs)
probs = outputs.logits_per_image.softmax(dim=1)
confidences = {labels[i]: float(probs[0, i].item()) for i in range(len(labels))}
return confidences, image
except Exception as e:
print(f"Error during CLIP processing: {e}")
traceback.print_exc()
return f"Error: {e}", image
def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
if not load_fastsam_model() or not fastsam_lib_imported:
return "Error: FastSAM not loaded or library unavailable."
if image_pil is None:
return "Please upload an image."
print("Running FastSAM 'segment everything'...")
try:
if image_pil.mode != "RGB":
image_pil = image_pil.convert("RGB")
image_np_rgb = np.array(image_pil)
everything_results = fastsam_model(
image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640,
conf=conf_threshold, iou=iou_threshold, verbose=True
)
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
ann = prompt_process.everything_prompt()
output_image = image_pil.copy()
if ann and ann[0] and 'masks' in ann[0] and len(ann[0]['masks']) > 0:
masks = ann[0]['masks'].cpu().numpy()
print(f"Found {len(masks)} masks with shape: {masks.shape}")
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
for mask in masks:
mask = (mask > 0).astype(np.uint8) * 255
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180)
mask_image = Image.fromarray(mask, mode='L')
draw.bitmap((0, 0), mask_image, fill=color)
output_image = Image.alpha_composite(output_image.convert('RGBA'), overlay).convert('RGB')
else:
print("No masks detected in 'segment everything' mode.")
return output_image
except Exception as e:
print(f"Error during FastSAM 'everything' processing: {e}")
traceback.print_exc()
return f"Error: {e}"
def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
if not load_fastsam_model():
return "Error: FastSAM Model not loaded.", "Model load failure."
if not fastsam_lib_imported:
return "Error: FastSAM library not available.", "Library import error."
if image_pil is None:
return "Please upload an image.", "No image provided."
if not text_prompts:
return image_pil, "Please enter text prompts (e.g., 'person, dog')."
prompts = [p.strip() for p in text_prompts.split(',') if p.strip()]
if not prompts:
return image_pil, "No valid text prompts entered."
print(f"Running FastSAM text-prompted segmentation for: {prompts}")
try:
if image_pil.mode != "RGB":
image_pil = image_pil.convert("RGB")
image_np_rgb = np.array(image_pil)
everything_results = fastsam_model(
image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640,
conf=conf_threshold, iou=iou_threshold, verbose=True
)
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
all_matching_masks = []
found_prompts = []
for text in prompts:
print(f" Processing prompt: '{text}'")
ann = prompt_process.text_prompt(text=text)
if ann and ann[0] and 'masks' in ann[0] and len(ann[0]['masks']) > 0:
num_found = len(ann[0]['masks'])
print(f" Found {num_found} mask(s) with shape: {ann[0]['masks'].shape}")
found_prompts.append(f"{text} ({num_found})")
masks = ann[0]['masks'].cpu().numpy()
all_matching_masks.extend(masks)
else:
print(f" No masks found for '{text}'.")
found_prompts.append(f"{text} (0)")
output_image = image_pil.copy()
status_message = f"Found segments for: {', '.join(found_prompts)}" if found_prompts else "No matches found."
if all_matching_masks:
masks_np = np.stack(all_matching_masks, axis=0)
print(f"Total masks stacked: {masks_np.shape}")
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
for mask in masks_np:
mask = (mask > 0).astype(np.uint8) * 255
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180)
mask_image = Image.fromarray(mask, mode='L')
draw.bitmap((0, 0), mask_image, fill=color)
output_image = Image.alpha_composite(output_image.convert('RGBA'), overlay).convert('RGB')
return output_image, status_message
except Exception as e:
print(f"Error during FastSAM text-prompted processing: {e}")
traceback.print_exc()
return image_pil, f"Error: {e}"
# --- Gradio Interface ---
print("Attempting to preload models...")
load_fastsam_model() # Load FastSAM eagerly
print("Preloading finished.")
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# CLIP & FastSAM Demo")
gr.Markdown("Explore Zero-Shot Classification, 'Segment Everything', and Text-Prompted Segmentation.")
with gr.Tabs():
with gr.TabItem("CLIP Zero-Shot Classification"):
gr.Markdown("Upload an image and provide comma-separated labels (e.g., 'cat, dog, car').")
with gr.Row():
with gr.Column(scale=1):
clip_input_image = gr.Image(type="pil", label="Input Image")
clip_text_labels = gr.Textbox(label="Comma-Separated Labels", placeholder="e.g., astronaut, moon")
clip_button = gr.Button("Run CLIP Classification", variant="primary")
with gr.Column(scale=1):
clip_output_label = gr.Label(label="Classification Probabilities")
clip_output_image_display = gr.Image(type="pil", label="Input Image Preview")
clip_button.click(
run_clip_zero_shot,
inputs=[clip_input_image, clip_text_labels],
outputs=[clip_output_label, clip_output_image_display]
)
gr.Examples(
examples=[
["examples/astronaut.jpg", "astronaut, moon, rover"],
["examples/dog_bike.jpg", "dog, bicycle, person"],
["examples/clip_logo.png", "logo, text, graphics"],
],
inputs=[clip_input_image, clip_text_labels],
outputs=[clip_output_label, clip_output_image_display],
fn=run_clip_zero_shot,
cache_examples=False,
)
with gr.TabItem("FastSAM Segment Everything"):
gr.Markdown("Upload an image to segment all objects/regions.")
with gr.Row():
with gr.Column(scale=1):
fastsam_input_image_all = gr.Image(type="pil", label="Input Image")
with gr.Row():
fastsam_conf_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
fastsam_iou_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
fastsam_button_all = gr.Button("Run FastSAM Segmentation", variant="primary")
with gr.Column(scale=1):
fastsam_output_image_all = gr.Image(type="pil", label="Segmented Image")
fastsam_button_all.click(
run_fastsam_segmentation,
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
outputs=[fastsam_output_image_all]
)
gr.Examples(
examples=[
["examples/dogs.jpg", 0.4, 0.9],
["examples/fruits.jpg", 0.5, 0.8],
["examples/lion.jpg", 0.45, 0.9],
],
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
outputs=[fastsam_output_image_all],
fn=run_fastsam_segmentation,
cache_examples=False,
)
with gr.TabItem("Text-Prompted Segmentation"):
gr.Markdown("Upload an image and provide comma-separated prompts (e.g., 'person, dog').")
with gr.Row():
with gr.Column(scale=1):
prompt_input_image = gr.Image(type="pil", label="Input Image")
prompt_text_input = gr.Textbox(label="Comma-Separated Text Prompts", placeholder="e.g., glasses, watch")
with gr.Row():
prompt_conf = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
prompt_iou = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
prompt_button = gr.Button("Segment by Text", variant="primary")
with gr.Column(scale=1):
prompt_output_image = gr.Image(type="pil", label="Text-Prompted Segmentation")
prompt_status_message = gr.Textbox(label="Status", interactive=False)
prompt_button.click(
run_text_prompted_segmentation,
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
outputs=[prompt_output_image, prompt_status_message]
)
gr.Examples(
examples=[
["examples/dog_bike.jpg", "person, bicycle", 0.4, 0.9],
["examples/astronaut.jpg", "person, helmet", 0.35, 0.9],
["examples/dogs.jpg", "dog", 0.4, 0.9],
["examples/fruits.jpg", "banana, apple", 0.5, 0.8],
["examples/teacher.jpg", "person, glasses", 0.4, 0.9],
],
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
outputs=[prompt_output_image, prompt_status_message],
fn=run_text_prompted_segmentation,
cache_examples=False,
)
# Download example images with retries
if not os.path.exists("examples"):
os.makedirs("examples")
print("Created 'examples' directory.")
example_files = {
"astronaut.jpg": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Astronaut_-_St._Jean_Bay.jpg/640px-Astronaut_-_St._Jean_Bay.jpg",
"dog_bike.jpg": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gradio/outputs_multimodal.jpg",
"clip_logo.png": "https://raw.githubusercontent.com/openai/CLIP/main/CLIP.png",
"dogs.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image8.jpg",
"fruits.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image9.jpg",
"lion.jpg": "https://huggingface.co/spaces/gradio/image-segmentation/resolve/main/images/lion.jpg",
"teacher.jpg": "https://images.pexels.com/photos/848117/pexels-photo-848117.jpeg?auto=compress&cs=tinysrgb&w=600"
}
def download_example_file(filename, url, retries=3):
filepath = os.path.join("examples", filename)
if not os.path.exists(filepath):
for attempt in range(retries):
try:
print(f"Downloading {filename} (attempt {attempt + 1}/{retries})...")
wget.download(url, filepath)
break
except Exception as e:
print(f"Attempt {attempt + 1} failed: {e}")
if attempt + 1 == retries:
print(f"Failed to download {filename} after {retries} attempts.")
for filename, url in example_files.items():
download_example_file(filename, url)
if __name__ == "__main__":
demo.launch(debug=True) |