File size: 16,745 Bytes
dfdcd97
a3ee867
03c5849
b066832
fd55cab
b066832
eefe5b4
03c5849
 
b066832
 
 
03c5849
 
b066832
 
03c5849
b066832
 
 
 
 
 
 
23fa119
 
 
 
 
 
03c5849
b066832
23fa119
 
 
 
 
 
03c5849
 
b066832
 
 
eba2946
b066832
 
03c5849
eba2946
 
 
 
 
 
03c5849
eba2946
 
 
03c5849
 
eba2946
 
03c5849
23fa119
eba2946
 
 
03c5849
b066832
eba2946
03c5849
 
 
 
 
 
 
 
 
 
b066832
 
 
 
 
23fa119
03c5849
 
23fa119
b066832
 
 
03c5849
 
b066832
 
eba2946
03c5849
b066832
03c5849
 
 
3cd1243
b066832
6facde6
b066832
 
23fa119
03c5849
 
 
 
 
6facde6
23fa119
03c5849
 
6facde6
b066832
 
03c5849
 
b066832
 
 
23fa119
b066832
eba2946
6facde6
b066832
eba2946
03c5849
6facde6
b066832
03c5849
 
 
 
23fa119
 
 
03c5849
 
23fa119
eba2946
23fa119
 
03c5849
23fa119
 
 
 
 
03c5849
23fa119
03c5849
23fa119
 
 
03c5849
 
 
23fa119
 
03c5849
 
23fa119
 
 
 
03c5849
23fa119
 
 
03c5849
23fa119
03c5849
b066832
23fa119
 
03c5849
e0d4d2f
23fa119
 
 
 
 
3d6a9c7
b066832
 
 
72f4c5c
b066832
23fa119
03c5849
b066832
 
23fa119
 
 
 
 
 
03c5849
23fa119
03c5849
23fa119
03c5849
 
23fa119
03c5849
23fa119
 
b066832
03c5849
6facde6
03c5849
 
 
 
 
 
 
 
 
 
 
23fa119
 
eefe5b4
23fa119
eba2946
03c5849
6facde6
 
e0d4d2f
b066832
03c5849
 
b066832
 
 
23fa119
b066832
 
 
03c5849
b066832
 
 
03c5849
b066832
 
 
eba2946
b066832
 
 
 
 
 
 
03c5849
 
 
b066832
 
03c5849
 
 
eefe5b4
6facde6
23fa119
03c5849
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23fa119
03c5849
b066832
 
23fa119
03c5849
 
23fa119
 
 
b066832
23fa119
03c5849
23fa119
 
 
03c5849
b066832
 
 
23fa119
 
03c5849
23fa119
03c5849
b066832
23fa119
 
 
eba2946
b066832
6facde6
03c5849
b066832
 
03c5849
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b066832
03c5849
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import gradio as gr
import torch
from transformers import AutoProcessor, AutoModel
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import random
import os
import wget
import traceback

# --- Configuration & Model Loading ---

# Device Selection with fallback
DEVICE = "cuda" if torch.cuda.is_available() and torch.cuda.current_device() >= 0 else "cpu"
print(f"Using device: {DEVICE}")

# --- CLIP Setup ---
CLIP_MODEL_ID = "openai/clip-vit-base-patch32"
clip_processor = None
clip_model = None

def load_clip_model():
    global clip_processor, clip_model
    if clip_processor is None:
        try:
            print(f"Loading CLIP processor: {CLIP_MODEL_ID}...")
            clip_processor = AutoProcessor.from_pretrained(CLIP_MODEL_ID)
            print("CLIP processor loaded.")
        except Exception as e:
            print(f"Error loading CLIP processor: {e}")
            return False
    if clip_model is None:
        try:
            print(f"Loading CLIP model: {CLIP_MODEL_ID}...")
            clip_model = AutoModel.from_pretrained(CLIP_MODEL_ID).to(DEVICE)
            print(f"CLIP model loaded to {DEVICE}.")
        except Exception as e:
            print(f"Error loading CLIP model: {e}")
            return False
    return True

# --- FastSAM Setup ---
FASTSAM_CHECKPOINT = "FastSAM-s.pt"
FASTSAM_CHECKPOINT_URL = f"https://huggingface.co/CASIA-IVA-Lab/FastSAM-s/resolve/main/{FASTSAM_CHECKPOINT}"

fastsam_model = None
fastsam_lib_imported = False

def check_and_import_fastsam():
    global fastsam_lib_imported
    if not fastsam_lib_imported:
        try:
            from fastsam import FastSAM, FastSAMPrompt
            globals()['FastSAM'] = FastSAM
            globals()['FastSAMPrompt'] = FastSAMPrompt
            fastsam_lib_imported = True
            print("fastsam library imported successfully.")
        except ImportError as e:
            print(f"Error: 'fastsam' library not found. Install with 'pip install fastsam': {e}")
            fastsam_lib_imported = False
        except Exception as e:
            print(f"Unexpected error during fastsam import: {e}")
            traceback.print_exc()
            fastsam_lib_imported = False
    return fastsam_lib_imported

def download_fastsam_weights(retries=3):
    if not os.path.exists(FASTSAM_CHECKPOINT):
        print(f"Downloading FastSAM weights: {FASTSAM_CHECKPOINT} from {FASTSAM_CHECKPOINT_URL}...")
        for attempt in range(retries):
            try:
                wget.download(FASTSAM_CHECKPOINT_URL, FASTSAM_CHECKPOINT)
                print("FastSAM weights downloaded.")
                break
            except Exception as e:
                print(f"Attempt {attempt + 1}/{retries} failed: {e}")
                if attempt + 1 == retries:
                    print("Failed to download weights after all attempts.")
                    return False
    return os.path.exists(FASTSAM_CHECKPOINT)

def load_fastsam_model():
    global fastsam_model
    if fastsam_model is None:
        if not check_and_import_fastsam():
            print("Cannot load FastSAM model due to library import failure.")
            return False
        if download_fastsam_weights():
            try:
                print(f"Loading FastSAM model: {FASTSAM_CHECKPOINT}...")
                fastsam_model = FastSAM(FASTSAM_CHECKPOINT)
                print("FastSAM model loaded.")
                return True
            except Exception as e:
                print(f"Error loading FastSAM model: {e}")
                traceback.print_exc()
                return False
        else:
            print("FastSAM weights not found or download failed.")
            return False
    return True

# --- Processing Functions ---

def run_clip_zero_shot(image: Image.Image, text_labels: str):
    if clip_model is None or clip_processor is None:
        if not load_clip_model():
            return "Error: CLIP Model could not be loaded.", None
    if image is None:
        return "Please upload an image.", None
    if not text_labels:
        return {}, image

    labels = [label.strip() for label in text_labels.split(',') if label.strip()]
    if not labels:
        return {}, image

    print(f"Running CLIP zero-shot classification with labels: {labels}")
    try:
        if image.mode != "RGB":
            image = image.convert("RGB")
        inputs = clip_processor(text=labels, images=image, return_tensors="pt", padding=True).to(DEVICE)
        with torch.no_grad():
            outputs = clip_model(**inputs)
            probs = outputs.logits_per_image.softmax(dim=1)
        confidences = {labels[i]: float(probs[0, i].item()) for i in range(len(labels))}
        return confidences, image
    except Exception as e:
        print(f"Error during CLIP processing: {e}")
        traceback.print_exc()
        return f"Error: {e}", image

def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
    if not load_fastsam_model() or not fastsam_lib_imported:
        return "Error: FastSAM not loaded or library unavailable."
    if image_pil is None:
        return "Please upload an image."

    print("Running FastSAM 'segment everything'...")
    try:
        if image_pil.mode != "RGB":
            image_pil = image_pil.convert("RGB")
        image_np_rgb = np.array(image_pil)

        everything_results = fastsam_model(
            image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640,
            conf=conf_threshold, iou=iou_threshold, verbose=True
        )
        prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
        ann = prompt_process.everything_prompt()

        output_image = image_pil.copy()
        if ann and ann[0] and 'masks' in ann[0] and len(ann[0]['masks']) > 0:
            masks = ann[0]['masks'].cpu().numpy()
            print(f"Found {len(masks)} masks with shape: {masks.shape}")
            overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
            draw = ImageDraw.Draw(overlay)
            for mask in masks:
                mask = (mask > 0).astype(np.uint8) * 255
                color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180)
                mask_image = Image.fromarray(mask, mode='L')
                draw.bitmap((0, 0), mask_image, fill=color)
            output_image = Image.alpha_composite(output_image.convert('RGBA'), overlay).convert('RGB')
        else:
            print("No masks detected in 'segment everything' mode.")
        return output_image
    except Exception as e:
        print(f"Error during FastSAM 'everything' processing: {e}")
        traceback.print_exc()
        return f"Error: {e}"

def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
    if not load_fastsam_model():
        return "Error: FastSAM Model not loaded.", "Model load failure."
    if not fastsam_lib_imported:
        return "Error: FastSAM library not available.", "Library import error."
    if image_pil is None:
        return "Please upload an image.", "No image provided."
    if not text_prompts:
        return image_pil, "Please enter text prompts (e.g., 'person, dog')."

    prompts = [p.strip() for p in text_prompts.split(',') if p.strip()]
    if not prompts:
        return image_pil, "No valid text prompts entered."

    print(f"Running FastSAM text-prompted segmentation for: {prompts}")
    try:
        if image_pil.mode != "RGB":
            image_pil = image_pil.convert("RGB")
        image_np_rgb = np.array(image_pil)

        everything_results = fastsam_model(
            image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640,
            conf=conf_threshold, iou=iou_threshold, verbose=True
        )
        prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
        all_matching_masks = []
        found_prompts = []

        for text in prompts:
            print(f"  Processing prompt: '{text}'")
            ann = prompt_process.text_prompt(text=text)
            if ann and ann[0] and 'masks' in ann[0] and len(ann[0]['masks']) > 0:
                num_found = len(ann[0]['masks'])
                print(f"    Found {num_found} mask(s) with shape: {ann[0]['masks'].shape}")
                found_prompts.append(f"{text} ({num_found})")
                masks = ann[0]['masks'].cpu().numpy()
                all_matching_masks.extend(masks)
            else:
                print(f"    No masks found for '{text}'.")
                found_prompts.append(f"{text} (0)")

        output_image = image_pil.copy()
        status_message = f"Found segments for: {', '.join(found_prompts)}" if found_prompts else "No matches found."

        if all_matching_masks:
            masks_np = np.stack(all_matching_masks, axis=0)
            print(f"Total masks stacked: {masks_np.shape}")
            overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
            draw = ImageDraw.Draw(overlay)
            for mask in masks_np:
                mask = (mask > 0).astype(np.uint8) * 255
                color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180)
                mask_image = Image.fromarray(mask, mode='L')
                draw.bitmap((0, 0), mask_image, fill=color)
            output_image = Image.alpha_composite(output_image.convert('RGBA'), overlay).convert('RGB')

        return output_image, status_message
    except Exception as e:
        print(f"Error during FastSAM text-prompted processing: {e}")
        traceback.print_exc()
        return image_pil, f"Error: {e}"

# --- Gradio Interface ---

print("Attempting to preload models...")
load_fastsam_model()  # Load FastSAM eagerly
print("Preloading finished.")

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# CLIP & FastSAM Demo")
    gr.Markdown("Explore Zero-Shot Classification, 'Segment Everything', and Text-Prompted Segmentation.")

    with gr.Tabs():
        with gr.TabItem("CLIP Zero-Shot Classification"):
            gr.Markdown("Upload an image and provide comma-separated labels (e.g., 'cat, dog, car').")
            with gr.Row():
                with gr.Column(scale=1):
                    clip_input_image = gr.Image(type="pil", label="Input Image")
                    clip_text_labels = gr.Textbox(label="Comma-Separated Labels", placeholder="e.g., astronaut, moon")
                    clip_button = gr.Button("Run CLIP Classification", variant="primary")
                with gr.Column(scale=1):
                    clip_output_label = gr.Label(label="Classification Probabilities")
                    clip_output_image_display = gr.Image(type="pil", label="Input Image Preview")
            clip_button.click(
                run_clip_zero_shot,
                inputs=[clip_input_image, clip_text_labels],
                outputs=[clip_output_label, clip_output_image_display]
            )
            gr.Examples(
                examples=[
                    ["examples/astronaut.jpg", "astronaut, moon, rover"],
                    ["examples/dog_bike.jpg", "dog, bicycle, person"],
                    ["examples/clip_logo.png", "logo, text, graphics"],
                ],
                inputs=[clip_input_image, clip_text_labels],
                outputs=[clip_output_label, clip_output_image_display],
                fn=run_clip_zero_shot,
                cache_examples=False,
            )

        with gr.TabItem("FastSAM Segment Everything"):
            gr.Markdown("Upload an image to segment all objects/regions.")
            with gr.Row():
                with gr.Column(scale=1):
                    fastsam_input_image_all = gr.Image(type="pil", label="Input Image")
                    with gr.Row():
                        fastsam_conf_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
                        fastsam_iou_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
                    fastsam_button_all = gr.Button("Run FastSAM Segmentation", variant="primary")
                with gr.Column(scale=1):
                    fastsam_output_image_all = gr.Image(type="pil", label="Segmented Image")
            fastsam_button_all.click(
                run_fastsam_segmentation,
                inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
                outputs=[fastsam_output_image_all]
            )
            gr.Examples(
                examples=[
                    ["examples/dogs.jpg", 0.4, 0.9],
                    ["examples/fruits.jpg", 0.5, 0.8],
                    ["examples/lion.jpg", 0.45, 0.9],
                ],
                inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
                outputs=[fastsam_output_image_all],
                fn=run_fastsam_segmentation,
                cache_examples=False,
            )

        with gr.TabItem("Text-Prompted Segmentation"):
            gr.Markdown("Upload an image and provide comma-separated prompts (e.g., 'person, dog').")
            with gr.Row():
                with gr.Column(scale=1):
                    prompt_input_image = gr.Image(type="pil", label="Input Image")
                    prompt_text_input = gr.Textbox(label="Comma-Separated Text Prompts", placeholder="e.g., glasses, watch")
                    with gr.Row():
                        prompt_conf = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
                        prompt_iou = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
                    prompt_button = gr.Button("Segment by Text", variant="primary")
                with gr.Column(scale=1):
                    prompt_output_image = gr.Image(type="pil", label="Text-Prompted Segmentation")
                    prompt_status_message = gr.Textbox(label="Status", interactive=False)
            prompt_button.click(
                run_text_prompted_segmentation,
                inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
                outputs=[prompt_output_image, prompt_status_message]
            )
            gr.Examples(
                examples=[
                    ["examples/dog_bike.jpg", "person, bicycle", 0.4, 0.9],
                    ["examples/astronaut.jpg", "person, helmet", 0.35, 0.9],
                    ["examples/dogs.jpg", "dog", 0.4, 0.9],
                    ["examples/fruits.jpg", "banana, apple", 0.5, 0.8],
                    ["examples/teacher.jpg", "person, glasses", 0.4, 0.9],
                ],
                inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
                outputs=[prompt_output_image, prompt_status_message],
                fn=run_text_prompted_segmentation,
                cache_examples=False,
            )

    # Download example images with retries
    if not os.path.exists("examples"):
        os.makedirs("examples")
        print("Created 'examples' directory.")
    example_files = {
        "astronaut.jpg": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Astronaut_-_St._Jean_Bay.jpg/640px-Astronaut_-_St._Jean_Bay.jpg",
        "dog_bike.jpg": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gradio/outputs_multimodal.jpg",
        "clip_logo.png": "https://raw.githubusercontent.com/openai/CLIP/main/CLIP.png",
        "dogs.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image8.jpg",
        "fruits.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image9.jpg",
        "lion.jpg": "https://huggingface.co/spaces/gradio/image-segmentation/resolve/main/images/lion.jpg",
        "teacher.jpg": "https://images.pexels.com/photos/848117/pexels-photo-848117.jpeg?auto=compress&cs=tinysrgb&w=600"
    }
    def download_example_file(filename, url, retries=3):
        filepath = os.path.join("examples", filename)
        if not os.path.exists(filepath):
            for attempt in range(retries):
                try:
                    print(f"Downloading {filename} (attempt {attempt + 1}/{retries})...")
                    wget.download(url, filepath)
                    break
                except Exception as e:
                    print(f"Attempt {attempt + 1} failed: {e}")
                    if attempt + 1 == retries:
                        print(f"Failed to download {filename} after {retries} attempts.")
    for filename, url in example_files.items():
        download_example_file(filename, url)

if __name__ == "__main__":
    demo.launch(debug=True)