Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,99 +1,39 @@
|
|
1 |
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
from PIL import Image
|
4 |
import torch
|
5 |
-
from
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
model =
|
10 |
-
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
preds = outputs.logits.squeeze().sigmoid().cpu()
|
42 |
-
segmentation = np.zeros((image.shape[0], image.shape[1]), dtype=np.uint8)
|
43 |
-
segmentation[y1:y2, x1:x2] = (preds.numpy() * 255).astype(np.uint8)
|
44 |
-
return Image.fromarray(segmentation)
|
45 |
-
|
46 |
-
def update_image(image, segmentation):
|
47 |
-
if segmentation is None:
|
48 |
-
return image
|
49 |
-
|
50 |
-
if isinstance(image, list):
|
51 |
-
image = image[0]
|
52 |
-
|
53 |
-
if isinstance(image, np.ndarray):
|
54 |
-
image_pil = Image.fromarray(image)
|
55 |
-
else:
|
56 |
-
image_pil = image
|
57 |
-
|
58 |
-
seg_pil = Image.fromarray(segmentation).convert('RGBA')
|
59 |
-
|
60 |
-
if image_pil.size!= seg_pil.size:
|
61 |
-
seg_pil = seg_pil.resize(image_pil.size, Image.NEAREST)
|
62 |
-
|
63 |
-
blended = Image.blend(image_pil.convert('RGBA'), seg_pil, 0.5)
|
64 |
-
|
65 |
-
return np.array(blended)
|
66 |
-
|
67 |
-
with gr.Blocks() as demo:
|
68 |
-
gr.Markdown("# Segment Anything-like Demo")
|
69 |
-
with gr.Row():
|
70 |
-
with gr.Column(scale=1):
|
71 |
-
input_image = gr.Image(label="Input Image")
|
72 |
-
with gr.Row():
|
73 |
-
x1_input = gr.Number(label="X1")
|
74 |
-
y1_input = gr.Number(label="Y1")
|
75 |
-
x2_input = gr.Number(label="X2")
|
76 |
-
y2_input = gr.Number(label="Y2")
|
77 |
-
with gr.Row():
|
78 |
-
everything_btn = gr.Button("Everything")
|
79 |
-
box_btn = gr.Button("Box")
|
80 |
-
with gr.Column(scale=1):
|
81 |
-
output_image = gr.Image(label="Segmentation Result")
|
82 |
-
|
83 |
-
everything_btn.click(
|
84 |
-
fn=segment_everything,
|
85 |
-
inputs=[input_image],
|
86 |
-
outputs=[output_image]
|
87 |
-
)
|
88 |
-
box_btn.click(
|
89 |
-
fn=segment_box,
|
90 |
-
inputs=[input_image, x1_input, y1_input, x2_input, y2_input],
|
91 |
-
outputs=[output_image]
|
92 |
-
)
|
93 |
-
output_image.change(
|
94 |
-
fn=update_image,
|
95 |
-
inputs=[input_image, output_image],
|
96 |
-
outputs=[output_image]
|
97 |
-
)
|
98 |
-
|
99 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from torchvision import transforms
|
5 |
+
|
6 |
+
# Load pre-trained U-Net model
|
7 |
+
model = torch.hub.load('nvidia/DeepLearningExamples:torchhub', 'unet', pretrained=True)
|
8 |
+
|
9 |
+
# Define a function to segment an image
|
10 |
+
def segment_image(image):
|
11 |
+
# Preprocess image
|
12 |
+
image = Image.fromarray(image)
|
13 |
+
image = transforms.Compose([
|
14 |
+
transforms.Resize((256, 256)),
|
15 |
+
transforms.ToTensor(),
|
16 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
17 |
+
])(image)
|
18 |
+
|
19 |
+
# Run segmentation model
|
20 |
+
output = model(image.unsqueeze(0))
|
21 |
+
output = torch.argmax(output, dim=1)
|
22 |
+
|
23 |
+
# Postprocess output
|
24 |
+
output = output.squeeze(0).cpu().numpy()
|
25 |
+
output = Image.fromarray(output.astype('uint8'))
|
26 |
+
|
27 |
+
return output
|
28 |
+
|
29 |
+
# Create Gradio app
|
30 |
+
demo = gr.Interface(
|
31 |
+
fn=segment_image,
|
32 |
+
inputs=gr.Image(type="pil"),
|
33 |
+
outputs=gr.Image(type="pil"),
|
34 |
+
title="Segment Anything",
|
35 |
+
description="Segment any image using a pre-trained U-Net model"
|
36 |
+
)
|
37 |
+
|
38 |
+
# Launch Gradio app
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
demo.launch()
|