Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
from transformers import CLIPProcessor, CLIPModel | |
from ultralytics import FastSAM | |
import supervision as sv | |
import os | |
# Load CLIP model | |
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
# Initialize FastSAM model | |
FASTSAM_WEIGHTS = "FastSAM-s.pt" | |
if not os.path.exists(FASTSAM_WEIGHTS): | |
os.system(f"wget https://huggingface.co/spaces/An-619/FastSAM/resolve/main/weights/{FASTSAM_WEIGHTS}") | |
fast_sam = FastSAM(FASTSAM_WEIGHTS) | |
def process_image_clip(image, text_input): | |
if image is None: | |
return "Please upload an image first." | |
if not text_input: | |
return "Please enter some text to check in the image." | |
try: | |
# Convert numpy array to PIL Image if needed | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
# Create a list of candidate labels | |
candidate_labels = [text_input, f"not {text_input}"] | |
# Process image and text | |
inputs = processor( | |
images=image, | |
text=candidate_labels, | |
return_tensors="pt", | |
padding=True | |
) | |
# Get model predictions | |
outputs = model(**{k: v for k, v in inputs.items()}) | |
logits_per_image = outputs.logits_per_image | |
probs = logits_per_image.softmax(dim=1) | |
# Get confidence for the positive label | |
confidence = float(probs[0][0]) | |
return f"Confidence that the image contains '{text_input}': {confidence:.2%}" | |
except Exception as e: | |
return f"Error processing image: {str(e)}" | |
def process_image_fastsam(image): | |
if image is None: | |
return None | |
try: | |
# Convert PIL image to numpy array if needed | |
if isinstance(image, Image.Image): | |
image_np = np.array(image) | |
else: | |
image_np = image | |
# Run FastSAM inference | |
results = fast_sam(image_np, device='cpu', retina_masks=True, imgsz=1024, conf=0.4, iou=0.9) | |
# Get detections | |
detections = sv.Detections.from_ultralytics(results[0]) | |
# Create annotator | |
box_annotator = sv.BoxAnnotator() | |
mask_annotator = sv.MaskAnnotator() | |
# Annotate image | |
annotated_image = mask_annotator.annotate(scene=image_np.copy(), detections=detections) | |
annotated_image = box_annotator.annotate(scene=annotated_image, detections=detections) | |
return Image.fromarray(annotated_image) | |
except Exception as e: | |
return f"Error processing image: {str(e)}" | |
# Create Gradio interface | |
with gr.Blocks(css="footer {visibility: hidden}") as demo: | |
gr.Markdown(""" | |
# CLIP and FastSAM Demo | |
This demo combines two powerful AI models: | |
- **CLIP**: For zero-shot image classification | |
- **FastSAM**: For automatic image segmentation | |
Try uploading an image and use either of the tabs below! | |
""") | |
with gr.Tab("CLIP Zero-Shot Classification"): | |
with gr.Row(): | |
image_input = gr.Image(label="Input Image") | |
text_input = gr.Textbox( | |
label="What do you want to check in the image?", | |
placeholder="e.g., 'a dog', 'sunset', 'people playing'", | |
info="Enter any concept you want to check in the image" | |
) | |
output_text = gr.Textbox(label="Result") | |
classify_btn = gr.Button("Classify") | |
classify_btn.click(fn=process_image_clip, inputs=[image_input, text_input], outputs=output_text) | |
gr.Examples( | |
examples=[ | |
["https://raw.githubusercontent.com/gradio-app/gradio/main/demo/kitchen/kitchen.png", "kitchen"], | |
["https://raw.githubusercontent.com/gradio-app/gradio/main/demo/calculator/calculator.jpg", "calculator"], | |
], | |
inputs=[image_input, text_input], | |
) | |
with gr.Tab("FastSAM Segmentation"): | |
with gr.Row(): | |
image_input_sam = gr.Image(label="Input Image") | |
image_output = gr.Image(label="Segmentation Result") | |
segment_btn = gr.Button("Segment") | |
segment_btn.click(fn=process_image_fastsam, inputs=[image_input_sam], outputs=image_output) | |
gr.Examples( | |
examples=[ | |
["https://raw.githubusercontent.com/gradio-app/gradio/main/demo/kitchen/kitchen.png"], | |
["https://raw.githubusercontent.com/gradio-app/gradio/main/demo/calculator/calculator.jpg"], | |
], | |
inputs=[image_input_sam], | |
) | |
gr.Markdown(""" | |
### How to use: | |
1. **CLIP Classification**: Upload an image and enter text to check if that concept exists in the image | |
2. **FastSAM Segmentation**: Upload an image to get automatic segmentation with bounding boxes and masks | |
### Note: | |
- The models run on CPU, so processing might take a few seconds | |
- For best results, use clear images with good lighting | |
""") | |
demo.launch(share=True) | |