sagar007's picture
Update app.py
03cdb75 verified
raw
history blame
5.57 kB
import gradio as gr
import spaces
from PIL import Image
import requests
from transformers import AutoModelForCausalLM, AutoProcessor
import torch
import subprocess
from io import BytesIO
import os
# Install flash-attn
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Load the model and processor
model_id = "microsoft/Phi-3.5-vision-instruct"
model = AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
torch_dtype=torch.float16,
use_flash_attention_2=False, # Explicitly disable Flash Attention 2
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)
@spaces.GPU(duration=120) # Adjust the duration as needed
def solve_math_problem(image):
# Move model to GPU for this function call
model.to('cuda')
# Prepare the input
messages = [
{"role": "user", "content": "<|image_1|>\nSolve this math problem step by step. Explain your reasoning clearly."},
]
prompt = processor.tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
# Process the input
inputs = processor(prompt, image, return_tensors="pt").to("cuda")
# Generate the response
generation_args = {
"max_new_tokens": 1000,
"temperature": 0.2,
"do_sample": True,
}
generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
# Decode the response
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
# Move model back to CPU to free up GPU memory
model.to('cpu')
return response
def load_image_from_file(file_path):
if os.path.exists(file_path):
return Image.open(file_path)
else:
raise FileNotFoundError(f"Image file not found: {file_path}")
# Custom CSS
# Custom CSS
custom_css = """
<style>
body {
font-family: 'Arial', sans-serif;
background-color: #f0f3f7;
margin: 0;
padding: 0;
}
.container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
.header {
background-color: #2c3e50;
color: white;
padding: 20px 0;
text-align: center;
}
.header h1 {
margin: 0;
font-size: 2.5em;
}
.main-content {
display: flex;
justify-content: space-between;
margin-top: 30px;
}
.input-section, .output-section {
width: 48%;
background-color: white;
border-radius: 8px;
padding: 20px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.gr-button {
background-color: #27ae60;
color: white;
border: none;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
transition: background-color 0.3s;
}
.gr-button:hover {
background-color: #2ecc71;
}
.examples-section {
margin-top: 30px;
background-color: white;
border-radius: 8px;
padding: 20px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.examples-section h3 {
margin-top: 0;
color: #2c3e50;
}
.footer {
text-align: center;
margin-top: 30px;
color: #7f8c8d;
}
</style>
"""
# Custom HTML
custom_html = """
<div class="container">
<div class="header">
<h1>AI Math Equation Solver</h1>
<p>Upload an image of a math problem, and our AI will solve it step by step!</p>
</div>
<div class="main-content">
<div class="input-section">
<h2>Upload Your Math Problem</h2>
{input_image}
{submit_btn}
</div>
<div class="output-section">
<h2>Solution</h2>
{output_text}
</div>
</div>
<div class="examples-section">
<h3>Try These Examples</h3>
{examples}
</div>
<div class="footer">
<p>Powered by Gradio and AI - Created for educational purposes</p>
</div>
</div>
"""
# Create the Gradio interface
with gr.Blocks(css=custom_css) as iface:
gr.HTML("""
<div class="header">
<h1>AI Math Equation Solver</h1>
<p>Upload an image of a math problem, and our AI will solve it step by step!</p>
</div>
""")
with gr.Row(equal_height=True):
with gr.Column():
gr.HTML("<h2>Upload Your Math Problem</h2>")
input_image = gr.Image(type="pil", label="Upload Math Problem Image")
submit_btn = gr.Button("Solve Problem", elem_classes=["gr-button"])
with gr.Column():
gr.HTML("<h2>Solution</h2>")
output_text = gr.Textbox(label="Step-by-step Solution", lines=10)
gr.HTML("<h3>Try These Examples</h3>")
examples = gr.Examples(
examples=[
os.path.join(os.path.dirname(__file__), "eqn1.png"),
os.path.join(os.path.dirname(__file__), "eqn2.png")
],
inputs=input_image,
outputs=output_text,
fn=solve_math_problem,
cache_examples=True,
)
gr.HTML("""
<div class="footer">
<p>Powered by Gradio and AI - Created for educational purposes</p>
</div>
""")
submit_btn.click(fn=solve_math_problem, inputs=input_image, outputs=output_text)
# Launch the app
iface.launch()