File size: 4,112 Bytes
7fcaeb8
4fe83fe
e532a6f
 
ef12c80
c483c84
 
e532a6f
 
2dac405
 
9497748
9c89101
7a4369e
135732e
e532a6f
9c89101
3aa6a46
 
e532a6f
 
020c612
 
 
 
 
e532a6f
bf2c261
c4ab978
8810698
 
 
a9962f8
ed76bd6
020c612
 
 
 
 
 
 
 
 
 
 
ed76bd6
020c612
b0c41b3
e532a6f
 
 
b0c41b3
e532a6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76a8d17
e532a6f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

   
import gradio as gr
import pandas as pd
import pickle
# from langchain.embeddings.openai import OpenAIEmbeddings
from langchain_openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
#from langchain.vectorstores import Chroma
from langchain_community.document_loaders import TextLoader
from langchain_community.chat_models import ChatOpenAI
# from langchain import PromptTemplate
from langchain_core.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_community.llms import OpenAI
from langchain_community.vectorstores.faiss import FAISS
#from langchain.vectorstores import FAISS


#export OPENAI_API_KEY='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'
import os

# Set the OPENAI_API_KEY environment variable directly
os.environ["OPENAI_API_KEY"] = "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"

# db = faiss.read_index('index.pkl')
#db = pickle.load('index.pkl')
# with open('index.pickle', 'rb') as pkl:
#         doc_embedding = pickle.load(pkl)
# db.save_local("faiss_index")

# embeddings = OpenAIEmbeddings()
# OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)

from pydantic.error_wrappers import ValidationError
from openai import OpenAIEmbeddings

openai_api_key = os.getenv("OPENAI_API_KEY")

try:
    embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
except ValidationError as e:
    print(f"Error: {e}")

#------------------------------------------------------------------------------
db=FAISS.load_local("faiss_index", embeddings,allow_dangerous_deserialization=True)
#-----------------------------------------------------------------------------
def get_response_from_query(db, query, k=3):

    docs = db.similarity_search(query, k=k)

    docs_page_content = " ".join([d.page_content for d in docs])

    # llm = BardLLM()
    llm = ChatOpenAI(model_name="gpt-3.5-turbo-16k",temperature=0)

    prompt = PromptTemplate(
        input_variables=["question", "docs"],
        template="""
        A bot that is open to discussions about different cultural, philosophical and political exchanges. I will use do different analysis to the articles provided to me. Stay truthful and if you weren't provided any resources give your oppinion only.
        Answer the following question: {question}
        By searching the following articles: {docs}

        Only use the factual information from the documents. Make sure to mention key phrases from the articles.

        If you feel like you don't have enough information to answer the question, say "I don't know".

        """,
    )

    chain = LLMChain(llm=llm, prompt=prompt)
    # chain = RetrievalQAWithSourcesChain.from_chain_type(llm=llm, prompt=prompt,
    #                                                     chain_type="stuff", retriever=db.as_retriever(), return_source_documents=True)

    response = chain.run(question=query, docs=docs_page_content,return_source_documents=True)
    r_text = str(response)

    ##evaluation part

    prompt_eval = PromptTemplate(
        input_variables=["answer", "docs"],
        template="""
       You job is to evaluate if the response to a given context is faithful.

        for the following: {answer}
        By searching the following article: {docs}

       Give a reason why they are similar or not, start with a Yes or a No.
        """,
    )

    chain_part_2 = LLMChain(llm=llm, prompt=prompt_eval)


    evals = chain_part_2.run(answer=r_text, docs=docs_page_content)

    return response,docs,evals

def greet(query):

    answer,sources,evals = get_response_from_query(db,query,2)
    return answer,sources,evals

demo = gr.Interface(fn=greet, title="cicero-semantic-search", inputs="text",
                    outputs=[gr.components.Textbox(lines=3, label="Response"),
                             gr.components.Textbox(lines=3, label="Source"),
                             gr.components.Textbox(lines=3, label="Evaluation")])

demo.launch(share=True, debug=True)