xszheng2020 commited on
Commit
1c203f9
·
verified ·
1 Parent(s): f37f4b4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -6
app.py CHANGED
@@ -1,14 +1,19 @@
 
1
  import gradio as gr
 
2
  import pandas as pd
3
  import numpy as np
4
  import lightgbm as lgb
5
  from sklearn.model_selection import train_test_split
6
  from PIL import Image
 
 
 
7
 
8
  title = "RegMix"
9
  description = "TBD."
10
 
11
- def infer(inputs):
12
  df = pd.DataFrame(inputs, columns=headers)
13
 
14
  X_columns = df.columns[0:-1]
@@ -166,7 +171,7 @@ def infer(inputs):
166
  gr.Image(Image.open('tmp.png')),
167
  df_val[['Target', 'Prediction']], ]
168
 
169
- def display_csv(file):
170
  df = pd.read_csv(file.name,
171
  # encoding='utf-8'
172
  )
@@ -181,12 +186,20 @@ inputs = [gr.Dataframe(headers=headers, row_count = (8, "dynamic"), datatype='nu
181
  outputs = [gr.ScatterPlot(), gr.Image(), gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), datatype='number', label="Results", headers=["True Loss", "Pred Loss"])]
182
 
183
  with gr.Blocks() as demo:
 
 
184
  upload_button = gr.UploadButton(label="Upload", file_types = ['.csv'],
185
  # live=True,
186
- file_count = "single")
187
- upload_button.upload(fn=display_csv, inputs=upload_button, outputs=inputs, api_name="upload_csv")
 
188
 
189
- gr.Interface(infer, inputs=inputs, outputs=outputs, title = title,
190
- description = description, examples=[df], cache_examples=False, allow_flagging='never')
 
 
 
 
191
 
 
192
  demo.launch(debug=False)
 
1
+ # import sklearn
2
  import gradio as gr
3
+ # import joblib
4
  import pandas as pd
5
  import numpy as np
6
  import lightgbm as lgb
7
  from sklearn.model_selection import train_test_split
8
  from PIL import Image
9
+ # import datasets
10
+
11
+ # pipe = joblib.load("./model.pkl")
12
 
13
  title = "RegMix"
14
  description = "TBD."
15
 
16
+ def infer(inputs, additional_inputs):
17
  df = pd.DataFrame(inputs, columns=headers)
18
 
19
  X_columns = df.columns[0:-1]
 
171
  gr.Image(Image.open('tmp.png')),
172
  df_val[['Target', 'Prediction']], ]
173
 
174
+ def upload_csv(file):
175
  df = pd.read_csv(file.name,
176
  # encoding='utf-8'
177
  )
 
186
  outputs = [gr.ScatterPlot(), gr.Image(), gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), datatype='number', label="Results", headers=["True Loss", "Pred Loss"])]
187
 
188
  with gr.Blocks() as demo:
189
+
190
+ ####
191
  upload_button = gr.UploadButton(label="Upload", file_types = ['.csv'],
192
  # live=True,
193
+ file_count = "single", render=False)
194
+ upload_button.upload(fn=upload_csv, inputs=upload_button, outputs=inputs, api_name="upload_csv")
195
+ ####
196
 
197
+ gr.Interface(infer, inputs=inputs, outputs=outputs, title=title,
198
+ additional_inputs = [upload_button],
199
+ additional_inputs_accordion='Upload CSV',
200
+ description = description,
201
+ examples=[[df], []],
202
+ cache_examples=False, allow_flagging='never')
203
 
204
+
205
  demo.launch(debug=False)