Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,19 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import lightgbm as lgb
|
5 |
from sklearn.model_selection import train_test_split
|
6 |
from PIL import Image
|
|
|
|
|
|
|
7 |
|
8 |
title = "RegMix"
|
9 |
description = "TBD."
|
10 |
|
11 |
-
def infer(inputs):
|
12 |
df = pd.DataFrame(inputs, columns=headers)
|
13 |
|
14 |
X_columns = df.columns[0:-1]
|
@@ -166,7 +171,7 @@ def infer(inputs):
|
|
166 |
gr.Image(Image.open('tmp.png')),
|
167 |
df_val[['Target', 'Prediction']], ]
|
168 |
|
169 |
-
def
|
170 |
df = pd.read_csv(file.name,
|
171 |
# encoding='utf-8'
|
172 |
)
|
@@ -181,12 +186,20 @@ inputs = [gr.Dataframe(headers=headers, row_count = (8, "dynamic"), datatype='nu
|
|
181 |
outputs = [gr.ScatterPlot(), gr.Image(), gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), datatype='number', label="Results", headers=["True Loss", "Pred Loss"])]
|
182 |
|
183 |
with gr.Blocks() as demo:
|
|
|
|
|
184 |
upload_button = gr.UploadButton(label="Upload", file_types = ['.csv'],
|
185 |
# live=True,
|
186 |
-
file_count = "single")
|
187 |
-
upload_button.upload(fn=
|
|
|
188 |
|
189 |
-
gr.Interface(infer, inputs=inputs, outputs=outputs, title
|
190 |
-
|
|
|
|
|
|
|
|
|
191 |
|
|
|
192 |
demo.launch(debug=False)
|
|
|
1 |
+
# import sklearn
|
2 |
import gradio as gr
|
3 |
+
# import joblib
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
6 |
import lightgbm as lgb
|
7 |
from sklearn.model_selection import train_test_split
|
8 |
from PIL import Image
|
9 |
+
# import datasets
|
10 |
+
|
11 |
+
# pipe = joblib.load("./model.pkl")
|
12 |
|
13 |
title = "RegMix"
|
14 |
description = "TBD."
|
15 |
|
16 |
+
def infer(inputs, additional_inputs):
|
17 |
df = pd.DataFrame(inputs, columns=headers)
|
18 |
|
19 |
X_columns = df.columns[0:-1]
|
|
|
171 |
gr.Image(Image.open('tmp.png')),
|
172 |
df_val[['Target', 'Prediction']], ]
|
173 |
|
174 |
+
def upload_csv(file):
|
175 |
df = pd.read_csv(file.name,
|
176 |
# encoding='utf-8'
|
177 |
)
|
|
|
186 |
outputs = [gr.ScatterPlot(), gr.Image(), gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), datatype='number', label="Results", headers=["True Loss", "Pred Loss"])]
|
187 |
|
188 |
with gr.Blocks() as demo:
|
189 |
+
|
190 |
+
####
|
191 |
upload_button = gr.UploadButton(label="Upload", file_types = ['.csv'],
|
192 |
# live=True,
|
193 |
+
file_count = "single", render=False)
|
194 |
+
upload_button.upload(fn=upload_csv, inputs=upload_button, outputs=inputs, api_name="upload_csv")
|
195 |
+
####
|
196 |
|
197 |
+
gr.Interface(infer, inputs=inputs, outputs=outputs, title=title,
|
198 |
+
additional_inputs = [upload_button],
|
199 |
+
additional_inputs_accordion='Upload CSV',
|
200 |
+
description = description,
|
201 |
+
examples=[[df], []],
|
202 |
+
cache_examples=False, allow_flagging='never')
|
203 |
|
204 |
+
|
205 |
demo.launch(debug=False)
|