Spaces:
Sleeping
Sleeping
import os | |
import utils | |
import streamlit as st | |
from streaming import StreamHandler | |
from langchain.chat_models import ChatOpenAI | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.memory import ConversationBufferMemory | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.vectorstores import DocArrayInMemorySearch | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import OpenAIEmbeddings | |
st.header('Chatbot for AEO ') | |
st.write('Please upload the necessary files about AEO in the sidebar and ask questions in the chat.') | |
class CustomDataChatbot: | |
def __init__(self): | |
self.oepn_ai_key = utils.configure_openai_api_key() | |
self.openai_model = "gpt-3.5-turbo" | |
def save_file(self, file): | |
folder = 'tmp' | |
if not os.path.exists(folder): | |
os.makedirs(folder) | |
file_path = f'./{folder}/{file.name}' | |
with open(file_path, 'wb') as f: | |
f.write(file.getvalue()) | |
return file_path | |
def setup_qa_chain(self, uploaded_files): | |
# Load documents | |
docs = [] | |
for file in uploaded_files: | |
file_path = self.save_file(file) | |
loader = PyPDFLoader(file_path) | |
docs.extend(loader.load()) | |
# Split documents | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1500, | |
chunk_overlap=200 | |
) | |
splits = text_splitter.split_documents(docs) | |
# Create embeddings and store in vectordb | |
embeddings = OpenAIEmbeddings(openai_api_key = self.oepn_ai_key) | |
vectordb = DocArrayInMemorySearch.from_documents(splits, embeddings) | |
# Define retriever | |
retriever = vectordb.as_retriever( | |
search_type='mmr', | |
search_kwargs={'k':2, 'fetch_k':4} | |
) | |
# Setup memory for contextual conversation | |
memory = ConversationBufferMemory( | |
memory_key='chat_history', | |
return_messages=True | |
) | |
# Setup LLM and QA chain | |
llm = ChatOpenAI(model_name=self.openai_model, temperature=0, streaming=True) | |
qa_chain = ConversationalRetrievalChain.from_llm(llm, retriever=retriever, memory=memory, verbose=True) | |
return qa_chain | |
def main(self): | |
# User Inputs | |
uploaded_files = st.sidebar.file_uploader(label='Upload PDF files', type=['pdf'], accept_multiple_files=True) | |
if not uploaded_files: | |
st.error("Please upload PDF documents to continue!") | |
st.stop() | |
user_query = st.chat_input(placeholder="Ask me anything!") | |
if uploaded_files and user_query: | |
qa_chain = self.setup_qa_chain(uploaded_files) | |
utils.display_msg(user_query, 'user') | |
with st.chat_message("assistant"): | |
st_cb = StreamHandler(st.empty()) | |
response = qa_chain.run(user_query, callbacks=[st_cb]) | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
if __name__ == "__main__": | |
obj = CustomDataChatbot() | |
obj.main() |