aeo_chat_bot / app.py
ibibek's picture
Upload 4 files
9e7b1cc
import os
import utils
import streamlit as st
from streaming import StreamHandler
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
from langchain.memory import ConversationBufferMemory
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain.vectorstores import DocArrayInMemorySearch
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
st.header('Chatbot for AEO ')
st.write('Please upload the necessary files about AEO in the sidebar and ask questions in the chat.')
class CustomDataChatbot:
def __init__(self):
self.oepn_ai_key = utils.configure_openai_api_key()
self.openai_model = "gpt-3.5-turbo"
def save_file(self, file):
folder = 'tmp'
if not os.path.exists(folder):
os.makedirs(folder)
file_path = f'./{folder}/{file.name}'
with open(file_path, 'wb') as f:
f.write(file.getvalue())
return file_path
@st.spinner('Analyzing documents..')
def setup_qa_chain(self, uploaded_files):
# Load documents
docs = []
for file in uploaded_files:
file_path = self.save_file(file)
loader = PyPDFLoader(file_path)
docs.extend(loader.load())
# Split documents
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1500,
chunk_overlap=200
)
splits = text_splitter.split_documents(docs)
# Create embeddings and store in vectordb
embeddings = OpenAIEmbeddings(openai_api_key = self.oepn_ai_key)
vectordb = DocArrayInMemorySearch.from_documents(splits, embeddings)
# Define retriever
retriever = vectordb.as_retriever(
search_type='mmr',
search_kwargs={'k':2, 'fetch_k':4}
)
# Setup memory for contextual conversation
memory = ConversationBufferMemory(
memory_key='chat_history',
return_messages=True
)
# Setup LLM and QA chain
llm = ChatOpenAI(model_name=self.openai_model, temperature=0, streaming=True)
qa_chain = ConversationalRetrievalChain.from_llm(llm, retriever=retriever, memory=memory, verbose=True)
return qa_chain
@utils.enable_chat_history
def main(self):
# User Inputs
uploaded_files = st.sidebar.file_uploader(label='Upload PDF files', type=['pdf'], accept_multiple_files=True)
if not uploaded_files:
st.error("Please upload PDF documents to continue!")
st.stop()
user_query = st.chat_input(placeholder="Ask me anything!")
if uploaded_files and user_query:
qa_chain = self.setup_qa_chain(uploaded_files)
utils.display_msg(user_query, 'user')
with st.chat_message("assistant"):
st_cb = StreamHandler(st.empty())
response = qa_chain.run(user_query, callbacks=[st_cb])
st.session_state.messages.append({"role": "assistant", "content": response})
if __name__ == "__main__":
obj = CustomDataChatbot()
obj.main()