sailormars18's picture
Update app.py
909e3bf
raw
history blame
3.64 kB
import pandas as pd
import gradio as gr
import re
import torch
import transformers
# Define a function for generating text based on a prompt using the fine-tuned GPT-2 model and the tokenizer
def generate_text(prompt, length=100, theme=None, **kwargs):
model_url = "https://huggingface.co/sailormars18/Yelp-reviews-usingGPT2"
# Load the model from the Hugging Face space
model = transformers.GPT2LMHeadModel.from_pretrained(model_url).to(device)
# Load the tokenizer from the Hugging Face space
tokenizer = transformers.GPT2Tokenizer.from_pretrained(model_url)
# If a theme is specified, add it to the prompt as a prefix for a special token
if theme:
prompt = ' <{}> '.format(theme.strip()) + prompt.strip()
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=device)
pad_token_id = tokenizer.eos_token_id
# Set the max length of the generated text based on the input parameter
max_length = length if length > 0 else 100
sample_outputs = model.generate(
input_ids,
attention_mask=attention_mask,
pad_token_id=pad_token_id,
do_sample=True,
max_length=max_length,
top_k=50,
top_p=0.95,
temperature=0.8,
num_return_sequences=1,
no_repeat_ngram_size=2,
repetition_penalty=1.5,
)
generated_text = tokenizer.decode(sample_outputs[0], skip_special_tokens=True)
# Post preprocessing of the generated text
# Remove any leading and trailing quotation marks
generated_text = generated_text.strip('"')
# Remove leading and trailing whitespace
generated_text = generated_text.strip()
# Find the special token in the generated text and remove it
match = re.search(r'<([^>]+)>', generated_text)
if match:
generated_text = generated_text[:match.start()] + generated_text[match.end():]
# Remove any leading numeric characters and quotation marks
generated_text = re.sub(r'^\d+', '', generated_text)
generated_text = re.sub(r'^"', '', generated_text)
# Remove any newline characters from the generated text
generated_text = generated_text.replace('\n', '')
# Remove any other unwanted special characters
generated_text = re.sub(r'[^\w\s]+', '', generated_text)
return generated_text.strip().capitalize()
# Define a Gradio interface for the generate_text function, allowing users to input a prompt and generate text based on it
iface = gr.Interface(
fn=generate_text,
inputs=['text', gr.inputs.Slider(minimum=10, maximum=100, default=50, label='Length of text'),
gr.inputs.Textbox(default='Food', label='Theme')],
outputs=[gr.outputs.Textbox(label='Generated Text')],
title='Yelp Review Generator',
description='Generate a Yelp review based on a prompt, length of text, and theme.',
examples=[
['I had a great experience at this restaurant.', 50, 'Service'],
['The service was terrible and the food was cold.', 50, 'Atmosphere'],
['The food was delicious but the service was slow.', 50, 'Food'],
['The ambiance was amazing and the staff was friendly.', 75, 'Service'],
['The waitstaff was knowledgeable and attentive, but the noise level was a bit high.', 75, 'Atmosphere'],
['The menu had a good variety of options, but the portion sizes were a bit small for the price.', 75, 'Food']
],
allow_flagging="manual",
flagging_options=[("πŸ™Œ", "positive"), ("😞", "negative")],
)
iface.launch(debug=False, share=True)