Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,16 @@
|
|
1 |
import streamlit as st
|
2 |
import soundfile as sf
|
3 |
-
|
|
|
|
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
|
8 |
-
#
|
9 |
try:
|
10 |
-
|
|
|
11 |
except Exception as e:
|
12 |
st.write(f"Error loading model: {e}")
|
13 |
|
@@ -21,6 +24,7 @@ uploaded_file = st.file_uploader("Choose an audio file...", type=["wav", "mp3",
|
|
21 |
if uploaded_file is not None:
|
22 |
# Load the audio file
|
23 |
audio_input, sample_rate = sf.read(uploaded_file)
|
|
|
24 |
|
25 |
# Display the audio player
|
26 |
st.audio(uploaded_file)
|
@@ -28,10 +32,34 @@ if uploaded_file is not None:
|
|
28 |
# Perform emotion classification
|
29 |
st.write("Classifying...")
|
30 |
try:
|
31 |
-
|
32 |
-
|
33 |
-
#
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
except Exception as e:
|
37 |
st.write(f"Error during classification: {e}")
|
|
|
1 |
import streamlit as st
|
2 |
import soundfile as sf
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModel, AutoFeatureExtractor
|
5 |
+
import os
|
6 |
|
7 |
+
# Get the Hugging Face API token from environment variables
|
8 |
+
token = os.getenv("HF_TOKEN")
|
9 |
|
10 |
+
# Load the model and feature extractor using your token
|
11 |
try:
|
12 |
+
model = AutoModel.from_pretrained("sami606713/emotion_classification", use_auth_token=token)
|
13 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("sami606713/emotion_classification", use_auth_token=token)
|
14 |
except Exception as e:
|
15 |
st.write(f"Error loading model: {e}")
|
16 |
|
|
|
24 |
if uploaded_file is not None:
|
25 |
# Load the audio file
|
26 |
audio_input, sample_rate = sf.read(uploaded_file)
|
27 |
+
sample_rate = 16000 # Ensure the sample rate is 16000
|
28 |
|
29 |
# Display the audio player
|
30 |
st.audio(uploaded_file)
|
|
|
32 |
# Perform emotion classification
|
33 |
st.write("Classifying...")
|
34 |
try:
|
35 |
+
inputs = feature_extractor(audio_input, sampling_rate=sample_rate, return_tensors="pt")
|
36 |
+
|
37 |
+
# Make prediction
|
38 |
+
with torch.no_grad():
|
39 |
+
outputs = model(**inputs)
|
40 |
+
|
41 |
+
embeddings = outputs.pooler_output
|
42 |
+
|
43 |
+
# Apply a classification head on top of the embeddings
|
44 |
+
id2label={
|
45 |
+
0:"angry",
|
46 |
+
1:'calm',
|
47 |
+
2:'disgust',
|
48 |
+
3:'fearful',
|
49 |
+
4:'happy',
|
50 |
+
5:'neutral',
|
51 |
+
6:'sad',
|
52 |
+
7:'surprised'
|
53 |
+
}
|
54 |
+
classifier = torch.nn.Linear(embeddings.shape[-1], len(id2label))
|
55 |
+
|
56 |
+
# Pass embeddings through the classifier
|
57 |
+
logits = classifier(embeddings)
|
58 |
+
|
59 |
+
# Get predicted class
|
60 |
+
predicted_class_idx = logits.argmax(-1).item()
|
61 |
+
predicted_class = id2label[predicted_class_idx]
|
62 |
+
|
63 |
+
st.write(f"Predicted Emotion: {predicted_class}")
|
64 |
except Exception as e:
|
65 |
st.write(f"Error during classification: {e}")
|