Update app.py
Browse files
app.py
CHANGED
@@ -30,36 +30,36 @@ if uploaded_file is not None:
|
|
30 |
st.audio(uploaded_file)
|
31 |
|
32 |
# Perform emotion classification
|
33 |
-
st.
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
except Exception as e:
|
65 |
st.write(f"Error during classification: {e}")
|
|
|
30 |
st.audio(uploaded_file)
|
31 |
|
32 |
# Perform emotion classification
|
33 |
+
if st.button("Classifying"):
|
34 |
+
try:
|
35 |
+
inputs = feature_extractor(audio_input, sampling_rate=sample_rate, return_tensors="pt")
|
36 |
+
|
37 |
+
# Make prediction
|
38 |
+
with torch.no_grad():
|
39 |
+
outputs = model(**inputs)
|
40 |
+
|
41 |
+
embeddings = outputs.pooler_output
|
42 |
+
|
43 |
+
# Apply a classification head on top of the embeddings
|
44 |
+
id2label={
|
45 |
+
0:"angry",
|
46 |
+
1:'calm',
|
47 |
+
2:'disgust',
|
48 |
+
3:'fearful',
|
49 |
+
4:'happy',
|
50 |
+
5:'neutral',
|
51 |
+
6:'sad',
|
52 |
+
7:'surprised'
|
53 |
+
}
|
54 |
+
classifier = torch.nn.Linear(embeddings.shape[-1], len(id2label))
|
55 |
+
|
56 |
+
# Pass embeddings through the classifier
|
57 |
+
logits = classifier(embeddings)
|
58 |
+
|
59 |
+
# Get predicted class
|
60 |
+
predicted_class_idx = logits.argmax(-1).item()
|
61 |
+
predicted_class = id2label[predicted_class_idx]
|
62 |
+
|
63 |
+
st.write(f"Predicted Emotion: {predicted_class}")
|
64 |
except Exception as e:
|
65 |
st.write(f"Error during classification: {e}")
|