Spaces:
Sleeping
Sleeping
File size: 27,204 Bytes
08a8718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "YIAgpK3L7Ztm",
"outputId": "56f931a2-7e43-4cb1-c755-874bb28c8573"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Mounted at /content/drive\n"
]
}
],
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')\n"
]
},
{
"cell_type": "code",
"source": [
"# Install necessary packages\n",
"!pip install mediapipe tensorflow scikit-learn opencv-python-headless\n",
"\n",
"# Import libraries\n",
"import os\n",
"import cv2\n",
"import numpy as np\n",
"import mediapipe as mp\n",
"import tensorflow as tf\n",
"from sklearn.model_selection import train_test_split\n",
"from tensorflow.keras import Sequential\n",
"from tensorflow.keras.layers import LSTM, Dense\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "jInzzU1b-ZIC",
"outputId": "163cec47-3d6d-435a-9819-fc7755e3ecc0"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Requirement already satisfied: mediapipe in /usr/local/lib/python3.10/dist-packages (0.10.15)\n",
"Requirement already satisfied: tensorflow in /usr/local/lib/python3.10/dist-packages (2.17.0)\n",
"Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.3.2)\n",
"Requirement already satisfied: opencv-python-headless in /usr/local/lib/python3.10/dist-packages (4.10.0.84)\n",
"Requirement already satisfied: absl-py in /usr/local/lib/python3.10/dist-packages (from mediapipe) (1.4.0)\n",
"Requirement already satisfied: attrs>=19.1.0 in /usr/local/lib/python3.10/dist-packages (from mediapipe) (24.2.0)\n",
"Requirement already satisfied: flatbuffers>=2.0 in /usr/local/lib/python3.10/dist-packages (from mediapipe) (24.3.25)\n",
"Requirement already satisfied: jax in /usr/local/lib/python3.10/dist-packages (from mediapipe) (0.4.26)\n",
"Requirement already satisfied: jaxlib in /usr/local/lib/python3.10/dist-packages (from mediapipe) (0.4.26+cuda12.cudnn89)\n",
"Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from mediapipe) (3.7.1)\n",
"Requirement already satisfied: numpy<2 in /usr/local/lib/python3.10/dist-packages (from mediapipe) (1.26.4)\n",
"Requirement already satisfied: opencv-contrib-python in /usr/local/lib/python3.10/dist-packages (from mediapipe) (4.10.0.84)\n",
"Requirement already satisfied: protobuf<5,>=4.25.3 in /usr/local/lib/python3.10/dist-packages (from mediapipe) (4.25.4)\n",
"Requirement already satisfied: sounddevice>=0.4.4 in /usr/local/lib/python3.10/dist-packages (from mediapipe) (0.5.0)\n",
"Requirement already satisfied: astunparse>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (1.6.3)\n",
"Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (0.6.0)\n",
"Requirement already satisfied: google-pasta>=0.1.1 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (0.2.0)\n",
"Requirement already satisfied: h5py>=3.10.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (3.11.0)\n",
"Requirement already satisfied: libclang>=13.0.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (18.1.1)\n",
"Requirement already satisfied: ml-dtypes<0.5.0,>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (0.4.0)\n",
"Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (3.3.0)\n",
"Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from tensorflow) (24.1)\n",
"Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (2.32.3)\n",
"Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from tensorflow) (71.0.4)\n",
"Requirement already satisfied: six>=1.12.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (1.16.0)\n",
"Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (2.4.0)\n",
"Requirement already satisfied: typing-extensions>=3.6.6 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (4.12.2)\n",
"Requirement already satisfied: wrapt>=1.11.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (1.16.0)\n",
"Requirement already satisfied: grpcio<2.0,>=1.24.3 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (1.64.1)\n",
"Requirement already satisfied: tensorboard<2.18,>=2.17 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (2.17.0)\n",
"Requirement already satisfied: keras>=3.2.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (3.4.1)\n",
"Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (0.37.1)\n",
"Requirement already satisfied: scipy>=1.5.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.13.1)\n",
"Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.4.2)\n",
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (3.5.0)\n",
"Requirement already satisfied: wheel<1.0,>=0.23.0 in /usr/local/lib/python3.10/dist-packages (from astunparse>=1.6.0->tensorflow) (0.44.0)\n",
"Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->tensorflow) (13.8.0)\n",
"Requirement already satisfied: namex in /usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->tensorflow) (0.0.8)\n",
"Requirement already satisfied: optree in /usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->tensorflow) (0.12.1)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorflow) (3.3.2)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorflow) (3.8)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorflow) (2.0.7)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorflow) (2024.7.4)\n",
"Requirement already satisfied: CFFI>=1.0 in /usr/local/lib/python3.10/dist-packages (from sounddevice>=0.4.4->mediapipe) (1.17.0)\n",
"Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.10/dist-packages (from tensorboard<2.18,>=2.17->tensorflow) (3.7)\n",
"Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard<2.18,>=2.17->tensorflow) (0.7.2)\n",
"Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from tensorboard<2.18,>=2.17->tensorflow) (3.0.4)\n",
"Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (1.3.0)\n",
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (0.12.1)\n",
"Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (4.53.1)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (1.4.5)\n",
"Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (9.4.0)\n",
"Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (3.1.4)\n",
"Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (2.8.2)\n",
"Requirement already satisfied: pycparser in /usr/local/lib/python3.10/dist-packages (from CFFI>=1.0->sounddevice>=0.4.4->mediapipe) (2.22)\n",
"Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/lib/python3.10/dist-packages (from werkzeug>=1.0.1->tensorboard<2.18,>=2.17->tensorflow) (2.1.5)\n",
"Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->keras>=3.2.0->tensorflow) (3.0.0)\n",
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->keras>=3.2.0->tensorflow) (2.16.1)\n",
"Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->keras>=3.2.0->tensorflow) (0.1.2)\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Import libraries\n",
"import os\n",
"import cv2\n",
"import numpy as np\n",
"import mediapipe as mp\n",
"import tensorflow as tf\n",
"from sklearn.model_selection import train_test_split\n",
"from tensorflow.keras import Sequential\n",
"from tensorflow.keras.layers import LSTM, Dense\n",
"\n",
"# Initialize MediaPipe\n",
"mp_pose = mp.solutions.pose\n",
"mp_drawing = mp.solutions.drawing_utils\n",
"\n",
"def extract_keypoints(video_path):\n",
" cap = cv2.VideoCapture(video_path)\n",
" pose = mp_pose.Pose()\n",
" keypoints = []\n",
"\n",
" while cap.isOpened():\n",
" ret, frame = cap.read()\n",
" if not ret:\n",
" break\n",
"\n",
" frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n",
" results = pose.process(frame_rgb)\n",
"\n",
" if results.pose_landmarks:\n",
" landmarks = []\n",
" for lm in results.pose_landmarks.landmark:\n",
" landmarks.extend([lm.x, lm.y, lm.z, lm.visibility])\n",
" keypoints.append(landmarks)\n",
" else:\n",
" keypoints.append([0] * 132) # 33 landmarks * 4 values (x, y, z, visibility)\n",
"\n",
" cap.release()\n",
" return np.array(keypoints)\n"
],
"metadata": {
"id": "3eMlBHrR-jEC"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"def process_videos_in_batches(parent_dir, batch_size=10):\n",
" X = []\n",
" y = []\n",
"\n",
" exercise_folders = [f for f in os.listdir(parent_dir) if os.path.isdir(os.path.join(parent_dir, f))]\n",
"\n",
" for exercise_folder in exercise_folders:\n",
" exercise_path = os.path.join(parent_dir, exercise_folder)\n",
" video_files = [f for f in os.listdir(exercise_path) if f.endswith('.mp4')]\n",
"\n",
" for i, video_file in enumerate(video_files):\n",
" video_path = os.path.join(exercise_path, video_file)\n",
" keypoints = extract_keypoints(video_path)\n",
" # Pad keypoints to ensure consistent length across videos\n",
" max_length = 100 # Replace with the expected maximum number of frames\n",
" if keypoints.shape[0] < max_length:\n",
" padding = np.zeros((max_length - keypoints.shape[0], keypoints.shape[1]))\n",
" keypoints = np.concatenate((keypoints, padding), axis=0)\n",
" elif keypoints.shape[0] > max_length: # Trim video if it is longer than max length\n",
" keypoints = keypoints[:max_length, :]\n",
" X.append(keypoints)\n",
" y.append(1) # Assuming all videos are labeled as correct exercise\n",
"\n",
" # If batch size is reached or last video in folder, save batch\n",
" if (i + 1) % batch_size == 0 or (i + 1) == len(video_files):\n",
" batch_index = i // batch_size\n",
" np.save(f'/content/drive/MyDrive/keypoints_batch_{exercise_folder}_{batch_index}.npy', np.array(X))\n",
" np.save(f'/content/drive/MyDrive/labels_batch_{exercise_folder}_{batch_index}.npy', np.array(y))\n",
" X = [] # Reset lists\n",
" y = []\n",
"\n",
" return True\n",
"\n",
"# Define the parent directory containing all exercise folders\n",
"parent_dir = '/content/drive/MyDrive/correct/correct'\n",
"process_videos_in_batches(parent_dir, batch_size=10)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "4MUyUyh2-ruX",
"outputId": "9a1bad49-d50d-44b3-e9e6-d1e311cee30e"
},
"execution_count": null,
"outputs": [
{
"metadata": {
"tags": null
},
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.10/dist-packages/google/protobuf/symbol_database.py:55: UserWarning: SymbolDatabase.GetPrototype() is deprecated. Please use message_factory.GetMessageClass() instead. SymbolDatabase.GetPrototype() will be removed soon.\n",
" warnings.warn('SymbolDatabase.GetPrototype() is deprecated. Please '\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"import numpy as np\n",
"import os\n",
"\n",
"# Define the directory where your batches are stored\n",
"batch_dir = '/content/drive/MyDrive/'\n",
"\n",
"# Initialize empty lists to store data and labels\n",
"X = []\n",
"y = []\n",
"\n",
"# Loop through saved batch files\n",
"for file_name in os.listdir(batch_dir):\n",
" if file_name.endswith('.npy'):\n",
" if 'keypoints_batch' in file_name:\n",
" X.append(np.load(os.path.join(batch_dir, file_name)))\n",
" elif 'labels_batch' in file_name:\n",
" y.append(np.load(os.path.join(batch_dir, file_name)))\n",
"\n",
"# Combine all batches into a single dataset\n",
"X = np.concatenate(X, axis=0)\n",
"y = np.concatenate(y, axis=0)\n",
"\n",
"print(f'Loaded {X.shape[0]} samples for training.')\n"
],
"metadata": {
"id": "h79UADwu-9bn",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "4cbeaae3-f6e4-4467-86d8-a7d098ca78dd"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Loaded 102 samples for training.\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"from sklearn.model_selection import train_test_split\n",
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras.layers import LSTM, Dense\n",
"\n",
"# Split data into training and testing sets\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
"\n",
"# Define the LSTM model\n",
"model = Sequential([\n",
" LSTM(64, return_sequences=True, input_shape=(X_train.shape[1], X_train.shape[2])),\n",
" LSTM(64),\n",
" Dense(32, activation='relu'),\n",
" Dense(1, activation='sigmoid')\n",
"])\n",
"\n",
"# Compile the model\n",
"model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n",
"\n",
"# Train the model\n",
"history = model.fit(X_train, y_train, epochs=20, validation_data=(X_test, y_test))\n",
"\n",
"# Save the trained model\n",
"model.save('lstm_model.h5')\n"
],
"metadata": {
"id": "jyr0HzDTBFWQ",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "ece2fc87-75aa-4b9a-e40b-f1bbb4d6a7c7"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
" super().__init__(**kwargs)\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 1/20\n",
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 307ms/step - accuracy: 0.6601 - loss: 0.6587 - val_accuracy: 1.0000 - val_loss: 0.5224\n",
"Epoch 2/20\n",
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 110ms/step - accuracy: 1.0000 - loss: 0.4933 - val_accuracy: 1.0000 - val_loss: 0.3953\n",
"Epoch 3/20\n",
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 102ms/step - accuracy: 1.0000 - loss: 0.3809 - val_accuracy: 1.0000 - val_loss: 0.2403\n",
"Epoch 4/20\n",
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 106ms/step - accuracy: 1.0000 - loss: 0.2357 - val_accuracy: 1.0000 - val_loss: 0.0733\n",
"Epoch 5/20\n",
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - accuracy: 1.0000 - loss: 0.0661 - val_accuracy: 1.0000 - val_loss: 0.0144\n",
"Epoch 6/20\n",
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - accuracy: 1.0000 - loss: 0.0128 - val_accuracy: 1.0000 - val_loss: 0.0052\n",
"Epoch 7/20\n",
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - accuracy: 1.0000 - loss: 0.0047 - val_accuracy: 1.0000 - val_loss: 0.0024\n",
"Epoch 8/20\n",
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - accuracy: 1.0000 - loss: 0.0022 - val_accuracy: 1.0000 - val_loss: 0.0013\n",
"Epoch 9/20\n",
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 108ms/step - accuracy: 1.0000 - loss: 0.0012 - val_accuracy: 1.0000 - val_loss: 7.7855e-04\n",
"Epoch 10/20\n",
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 101ms/step - accuracy: 1.0000 - loss: 7.1853e-04 - val_accuracy: 1.0000 - val_loss: 5.1570e-04\n",
"Epoch 11/20\n",
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 106ms/step - accuracy: 1.0000 - loss: 4.8286e-04 - val_accuracy: 1.0000 - val_loss: 3.7081e-04\n",
"Epoch 12/20\n",
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - accuracy: 1.0000 - loss: 3.5438e-04 - val_accuracy: 1.0000 - val_loss: 2.8507e-04\n",
"Epoch 13/20\n",
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 103ms/step - accuracy: 1.0000 - loss: 2.7463e-04 - val_accuracy: 1.0000 - val_loss: 2.3120e-04\n",
"Epoch 14/20\n",
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - accuracy: 1.0000 - loss: 2.2495e-04 - val_accuracy: 1.0000 - val_loss: 1.9555e-04\n",
"Epoch 15/20\n",
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - accuracy: 1.0000 - loss: 1.9260e-04 - val_accuracy: 1.0000 - val_loss: 1.7094e-04\n",
"Epoch 16/20\n",
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - accuracy: 1.0000 - loss: 1.6921e-04 - val_accuracy: 1.0000 - val_loss: 1.5331e-04\n",
"Epoch 17/20\n",
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 102ms/step - accuracy: 1.0000 - loss: 1.5150e-04 - val_accuracy: 1.0000 - val_loss: 1.4028e-04\n",
"Epoch 18/20\n",
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 134ms/step - accuracy: 1.0000 - loss: 1.3873e-04 - val_accuracy: 1.0000 - val_loss: 1.3034e-04\n",
"Epoch 19/20\n",
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 163ms/step - accuracy: 1.0000 - loss: 1.2947e-04 - val_accuracy: 1.0000 - val_loss: 1.2256e-04\n",
"Epoch 20/20\n",
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 186ms/step - accuracy: 1.0000 - loss: 1.2323e-04 - val_accuracy: 1.0000 - val_loss: 1.1630e-04\n"
]
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Import libraries\n",
"import os\n",
"import cv2\n",
"import numpy as np\n",
"import mediapipe as mp\n",
"import tensorflow as tf\n",
"from sklearn.model_selection import train_test_split\n",
"from tensorflow.keras import Sequential\n",
"from tensorflow.keras.layers import LSTM, Dense\n",
"\n",
"# Initialize MediaPipe\n",
"mp_pose = mp.solutions.pose\n",
"mp_drawing = mp.solutions.drawing_utils\n",
"\n",
"def extract_keypoints(video_path):\n",
" cap = cv2.VideoCapture(video_path)\n",
" pose = mp_pose.Pose()\n",
" keypoints = []\n",
"\n",
" while cap.isOpened():\n",
" ret, frame = cap.read()\n",
" if not ret:\n",
" break\n",
"\n",
" frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n",
" results = pose.process(frame_rgb)\n",
"\n",
" if results.pose_landmarks:\n",
" landmarks = []\n",
" for lm in results.pose_landmarks.landmark:\n",
" landmarks.extend([lm.x, lm.y, lm.z, lm.visibility])\n",
" keypoints.append(landmarks)\n",
" else:\n",
" keypoints.append([0] * 132) # 33 landmarks * 4 values (x, y, z, visibility)\n",
"\n",
" cap.release()\n",
" return np.array(keypoints)\n",
"\n",
"def predict_exercise(video_path, model):\n",
" keypoints = extract_keypoints(video_path) # Now extract_keypoints is available\n",
" keypoints = np.expand_dims(keypoints, axis=0)\n",
" prediction = model.predict(keypoints)\n",
"\n",
" if prediction > 0.5:\n",
" return 'Correct Exercise'\n",
" else:\n",
" return 'Incorrect Exercise'\n",
"\n",
"# Example usage:\n",
"uploaded_video_path = '/content/drive/MyDrive/correct/correct/decline bench press/dbp_1.mp4'\n",
"result = predict_exercise(uploaded_video_path, model)\n",
"print(f'Result: {result}')"
],
"metadata": {
"id": "8kcyfLGmBNtZ",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "24c01dea-14fc-4467-ec26-d4635ff022ea"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 334ms/step\n",
"Result: Correct Exercise\n"
]
}
]
}
]
} |