Spaces:
Sleeping
Sleeping
File size: 6,476 Bytes
9fdf4f6 6954035 4622ed5 9fdf4f6 766f16f 4622ed5 7541c6e 4622ed5 61ac903 4622ed5 766f16f 4622ed5 7541c6e 766f16f 4622ed5 766f16f 4622ed5 766f16f 4622ed5 766f16f 4622ed5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import streamlit as st
from dotenv import load_dotenv
import os
from htmlTemplate import css, bot_template, user_template
import PyPDF2
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings.spacy_embeddings import SpacyEmbeddings
from langchain_community.llms import LlamaCpp
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.prompts import PromptTemplate
from sentence_transformers import SentenceTransformer, util
from langchain_openai import AzureOpenAIEmbeddings
from langchain_openai import OpenAIEmbeddings
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
from langchain_openai import ChatOpenAI
os.environ["GROQ_API_KEY"]=os.getenv('GROQ_API_KEY')
from langchain_groq import ChatGroq
llmtemplate = """You’re an AI information specialist with a strong emphasis on extracting accurate information from markdown documents. Your expertise involves summarizing data succinctly while adhering to strict guidelines about neutrality and clarity.
Your task is to answer a specific question based on a provided markdown document. Here is the question you need to address:
{question}
Keep in mind the following instructions:
- Your response should be direct and factual, limited to 50 words and 2-3 sentences.
- Avoid using introductory phrases like "yes" or "no."
- Maintain an ethical and unbiased tone, steering clear of harmful or offensive content.
- If the document lacks relevant information, respond with "I cannot provide an answer based on the provided document."
- Do not fabricate information, include questions, or use confirmatory phrases.
- Remember not to prompt for additional information or ask any questions.
Ensure your response is strictly based on the content of the markdown document.
"""
def prepare_docs(pdf_docs):
docs = []
metadata = []
content = []
for pdf in pdf_docs:
print(pdf.name)
pdf_reader = PyPDF2.PdfReader(pdf)
for index, text in enumerate(pdf_reader.pages):
doc_page = {'title': pdf.name + " page " + str(index + 1),
'content': pdf_reader.pages[index].extract_text()}
docs.append(doc_page)
for doc in docs:
content.append(doc["content"])
metadata.append({
"title": doc["title"]
})
return content, metadata
def get_text_chunks(content, metadata):
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=1024,
chunk_overlap=256,
)
split_docs = text_splitter.create_documents(content, metadatas=metadata)
print(f"Split documents into {len(split_docs)} passages")
return split_docs
def ingest_into_vectordb(split_docs):
# embeddings = OpenAIEmbeddings()
# embeddings = FastEmbedEmbeddings()
embeddings = SpacyEmbeddings(model_name="en_core_web_sm")
db = FAISS.from_documents(split_docs, embeddings)
DB_FAISS_PATH = 'vectorstore/db_faiss'
db.save_local(DB_FAISS_PATH)
return db
def get_conversation_chain(vectordb):
# llama_llm = ChatOpenAI(temperature=0.7, model="gpt-3.5-turbo")
llm = ChatGroq(model="llama3-70b-8192", temperature=0.25)
retriever = vectordb.as_retriever()
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(llmtemplate)
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True, output_key='answer')
conversation_chain = (ConversationalRetrievalChain.from_llm
(llm=llm,
retriever=retriever,
#condense_question_prompt=CONDENSE_QUESTION_PROMPT,
memory=memory,
return_source_documents=True))
print("Conversational Chain created for the LLM using the vector store")
return conversation_chain
def validate_answer_against_sources(response_answer, source_documents):
model = SentenceTransformer('all-MiniLM-L6-v2')
similarity_threshold = 0.5
source_texts = [doc.page_content for doc in source_documents]
answer_embedding = model.encode(response_answer, convert_to_tensor=True)
source_embeddings = model.encode(source_texts, convert_to_tensor=True)
cosine_scores = util.pytorch_cos_sim(answer_embedding, source_embeddings)
if any(score.item() > similarity_threshold for score in cosine_scores[0]):
return True
return False
def handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
print(i)
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
print(message.content)
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv()
st.set_page_config(page_title="Chat with your PDFs",
page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
st.header("Chat with multiple PDFs :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
# get pdf text
content, metadata = prepare_docs(pdf_docs)
# get the text chunks
split_docs = get_text_chunks(content, metadata)
# create vector store
vectorstore = ingest_into_vectordb(split_docs)
# create conversation chain
st.session_state.conversation = get_conversation_chain(
vectorstore)
if __name__ == '__main__':
main() |