File size: 6,476 Bytes
9fdf4f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6954035
4622ed5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fdf4f6
 
766f16f
4622ed5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7541c6e
4622ed5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61ac903
4622ed5
 
 
 
 
 
 
 
 
 
 
766f16f
4622ed5
 
 
 
 
 
7541c6e
766f16f
 
 
 
 
4622ed5
 
 
 
 
 
766f16f
4622ed5
766f16f
4622ed5
766f16f
4622ed5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import streamlit as st
from dotenv import load_dotenv
import os
from htmlTemplate import css, bot_template, user_template
import PyPDF2
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings.spacy_embeddings import SpacyEmbeddings
from langchain_community.llms import LlamaCpp
from langchain.embeddings import HuggingFaceEmbeddings 
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.prompts import PromptTemplate
from sentence_transformers import SentenceTransformer, util
from langchain_openai import AzureOpenAIEmbeddings
from langchain_openai import OpenAIEmbeddings
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
from langchain_openai import ChatOpenAI
os.environ["GROQ_API_KEY"]=os.getenv('GROQ_API_KEY')
from langchain_groq import ChatGroq

llmtemplate = """You’re an AI information specialist with a strong emphasis on extracting accurate information from markdown documents. Your expertise involves summarizing data succinctly while adhering to strict guidelines about neutrality and clarity.

Your task is to answer a specific question based on a provided markdown document. Here is the question you need to address:  
{question}

Keep in mind the following instructions:  
- Your response should be direct and factual, limited to 50 words and 2-3 sentences.  
- Avoid using introductory phrases like "yes" or "no."  
- Maintain an ethical and unbiased tone, steering clear of harmful or offensive content.  
- If the document lacks relevant information, respond with "I cannot provide an answer based on the provided document."  
- Do not fabricate information, include questions, or use confirmatory phrases.  
- Remember not to prompt for additional information or ask any questions.  

Ensure your response is strictly based on the content of the markdown document.
    """



def prepare_docs(pdf_docs):
    docs = []
    metadata = []
    content = []

    for pdf in pdf_docs:
        print(pdf.name)
        pdf_reader = PyPDF2.PdfReader(pdf)
        for index, text in enumerate(pdf_reader.pages):
            doc_page = {'title': pdf.name + " page " + str(index + 1),
                        'content': pdf_reader.pages[index].extract_text()}
            docs.append(doc_page)
    for doc in docs:
        content.append(doc["content"])
        metadata.append({
            "title": doc["title"]
        })
    return content, metadata


def get_text_chunks(content, metadata):
    text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
        chunk_size=1024,
        chunk_overlap=256,
    )
    split_docs = text_splitter.create_documents(content, metadatas=metadata)
    print(f"Split documents into {len(split_docs)} passages")
    return split_docs


def ingest_into_vectordb(split_docs):
    # embeddings = OpenAIEmbeddings()
    # embeddings = FastEmbedEmbeddings()
    embeddings = SpacyEmbeddings(model_name="en_core_web_sm")
    db = FAISS.from_documents(split_docs, embeddings)
    DB_FAISS_PATH = 'vectorstore/db_faiss'
    db.save_local(DB_FAISS_PATH)
    return db


def get_conversation_chain(vectordb):
    # llama_llm = ChatOpenAI(temperature=0.7, model="gpt-3.5-turbo")
    llm = ChatGroq(model="llama3-70b-8192", temperature=0.25)
    retriever = vectordb.as_retriever()
    CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(llmtemplate)

    memory = ConversationBufferMemory(
        memory_key='chat_history', return_messages=True, output_key='answer')

    conversation_chain = (ConversationalRetrievalChain.from_llm
                          (llm=llm,
                           retriever=retriever,
                           #condense_question_prompt=CONDENSE_QUESTION_PROMPT,
                           memory=memory,
                           return_source_documents=True))
    print("Conversational Chain created for the LLM using the vector store")
    return conversation_chain

def validate_answer_against_sources(response_answer, source_documents):
    model = SentenceTransformer('all-MiniLM-L6-v2')
    similarity_threshold = 0.5  
    source_texts = [doc.page_content for doc in source_documents]

    answer_embedding = model.encode(response_answer, convert_to_tensor=True)
    source_embeddings = model.encode(source_texts, convert_to_tensor=True)

    cosine_scores = util.pytorch_cos_sim(answer_embedding, source_embeddings)


    if any(score.item() > similarity_threshold for score in cosine_scores[0]):
        return True  

    return False  

def handle_userinput(user_question):
    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']
    
    for i, message in enumerate(st.session_state.chat_history):
        print(i)
        if i % 2 == 0:
            st.write(user_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)
        else:
            print(message.content)
            st.write(bot_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)



def main():
    load_dotenv()

    st.set_page_config(page_title="Chat with your PDFs",
                       page_icon=":books:")
    st.write(css, unsafe_allow_html=True)

    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = []

    st.header("Chat with multiple PDFs :books:")
    user_question = st.text_input("Ask a question about your documents:")

    if user_question:
        handle_userinput(user_question)

    with st.sidebar:
        st.subheader("Your documents")
        pdf_docs = st.file_uploader(
            "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)

        if st.button("Process"):
            with st.spinner("Processing"):
                # get pdf text
                content, metadata = prepare_docs(pdf_docs)

                # get the text chunks
                split_docs = get_text_chunks(content, metadata)

                # create vector store
                vectorstore = ingest_into_vectordb(split_docs)

                # create conversation chain
                st.session_state.conversation = get_conversation_chain(
                    vectorstore)


if __name__ == '__main__':
    main()