Spaces:
Sleeping
Sleeping
File size: 7,962 Bytes
daf8559 34df8ca daf8559 e1a3efa daf8559 e1a3efa 5bfc41d daf8559 cf7e785 daf8559 5bfc41d daf8559 cf7e785 daf8559 8bc1126 daf8559 8bc1126 daf8559 8bc1126 daf8559 8bc1126 cf7e785 daf8559 cf7e785 daf8559 e1a3efa daf8559 5e1746f daf8559 cf7e785 daf8559 e1a3efa daf8559 cf7e785 daf8559 cf7e785 daf8559 34df8ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.preprocessing import LabelEncoder
import gradio as gr
import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import GlobalAveragePooling2D, Dense, Input
from tensorflow.keras.optimizers import Adam
from PIL import Image
import rasterio
import matplotlib.pyplot as plt
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.models import Model
import cv2
import joblib
# Load crop data
def load_data():
url = 'https://raw.githubusercontent.com/NarutoOp/Crop-Recommendation/master/cropdata.csv'
data = pd.read_csv(url)
return data
data = load_data()
label_encoders = {}
for column in ['STATE', 'CROP']:
le = LabelEncoder()
data[column] = le.fit_transform(data[column])
label_encoders[column] = le
X = data[['YEAR', 'STATE', 'CROP', 'YEILD']] # Feature columns
y = data['PROFIT'] # Target column
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
models = {
'Linear Regression': LinearRegression(),
'SVR': SVR(),
'Random Forest': RandomForestRegressor(),
'Gradient Boosting': GradientBoostingRegressor()
}
for name, model in models.items():
model.fit(X_train, y_train)
def predict_traditional(model_name, year, state, crop, yield_):
if model_name in models:
model = models[model_name]
state_encoded = label_encoders['STATE'].transform([state])[0]
crop_encoded = label_encoders['CROP'].transform([crop])[0]
prediction = model.predict([[year, state_encoded, crop_encoded, yield_]])[0]
return prediction
else:
return "Model not found"
# Train RandomForestRegressor model for deep learning model
def train_random_forest_model():
def process_tiff(file_path):
with rasterio.open(file_path) as src:
tiff_data = src.read()
B2_image = tiff_data[1, :, :] # Assuming B2 is the second band
target_size = (50, 50)
B2_resized = cv2.resize(B2_image, target_size, interpolation=cv2.INTER_NEAREST)
return B2_resized.reshape(-1, 1)
data_dir = 'Data'
X_list = []
y_list = []
for root, dirs, files in os.walk(data_dir):
for file in files:
if file.endswith('.tiff'):
file_path = os.path.join(root, file)
X_list.append(process_tiff(file_path))
y_list.append(np.random.rand(2500)) # Replace with actual target data
X = np.vstack(X_list)
y = np.hstack(y_list)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
return model
rf_model = train_random_forest_model()
def predict_random_forest(file):
if file is not None:
def process_tiff(file_path):
with rasterio.open(file_path) as src:
tiff_data = src.read()
B2_image = tiff_data[1, :, :]
target_size = (50, 50)
B2_resized = cv2.resize(B2_image, target_size, interpolation=cv2.INTER_NEAREST)
return B2_resized.reshape(-1, 1)
tiff_processed = process_tiff(file.name)
prediction = rf_model.predict(tiff_processed)
prediction_reshaped = prediction.reshape((50, 50))
plt.figure(figsize=(10, 10))
plt.imshow(prediction_reshaped, cmap='viridis')
plt.colorbar()
plt.title('Yield Prediction for Single TIFF File')
plt.savefig('/tmp/rf_prediction_overlay.png')
return '/tmp/rf_prediction_overlay.png'
else:
return "No file uploaded"
# Load deep learning models
def load_deep_learning_model(model_name):
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(128, 128, 3))
base_model.trainable = False
inputs = Input(shape=(128, 128, 3))
x = base_model(inputs, training=False)
x = GlobalAveragePooling2D()(x)
outputs = Dense(1, activation='linear')(x)
model = Model(inputs, outputs)
model.compile(optimizer=Adam(), loss='mean_squared_error', metrics=['mae'])
return model
deep_learning_models = {
'ResNet50': load_deep_learning_model('ResNet50'),
# Add other models here if needed
}
def predict_deep_learning(model_name, file):
if model_name in deep_learning_models:
if file is not None:
with rasterio.open(file.name) as src:
img_data = src.read(1)
patch_size = 128
n_patches_x = img_data.shape[1] // patch_size
n_patches_y = img_data.shape[0] // patch_size
patches = []
for i in range(n_patches_y):
for j in range(n_patches_x):
patch = img_data[i*patch_size:(i+1)*patch_size, j*patch_size:(j+1)*patch_size]
patches.append(patch)
patches = np.array(patches)
preprocessed_patches = []
for patch in patches:
img = Image.fromarray(patch)
img = img.convert('RGB')
img = img.resize((128, 128))
img_array = np.array(img) / 255.0
preprocessed_patches.append(img_array)
preprocessed_patches = np.array(preprocessed_patches)
model = deep_learning_models[model_name]
predictions = model.predict(preprocessed_patches)
predictions = predictions.reshape((n_patches_y, n_patches_x))
# Set a threshold to highlight areas with higher predicted yields
threshold = np.percentile(predictions, 90) # Adjust the percentile as needed
# Create an overlay image to visualize predictions
overlay = np.zeros_like(img_data, dtype=np.float32)
for i in range(n_patches_y):
for j in range(n_patches_x):
if predictions[i, j] > threshold:
overlay[i*patch_size:(i+1)*patch_size, j*patch_size:(j+1)*patch_size] = predictions[i, j]
# Plot the overlay on the original image
plt.figure(figsize=(10, 10))
plt.imshow(img_data, cmap='gray', alpha=0.5)
plt.imshow(overlay, cmap='jet', alpha=0.5)
plt.title('Crop Yield Prediction Overlay')
plt.colorbar()
# Save the plot to a file
plt.savefig('/tmp/dl_prediction_overlay.png')
return '/tmp/dl_prediction_overlay.png'
else:
return "No file uploaded"
else:
return "Model not found"
inputs_traditional = [
gr.Dropdown(choices=list(models.keys()), label='Model'),
gr.Number(label='Year'),
gr.Textbox(label='State'),
gr.Textbox(label='Crop'),
gr.Number(label='Yield'),
]
outputs_traditional = gr.Textbox(label='Predicted Profit')
inputs_deep_learning = [
gr.Dropdown(choices=list(deep_learning_models.keys()) + ['Random Forest'], label='Model'),
gr.File(label='Upload TIFF File')
]
outputs_deep_learning = gr.Image(label='Prediction Overlay')
with gr.Blocks() as demo:
with gr.Tab("Traditional ML Models"):
gr.Interface(
fn=predict_traditional,
inputs=inputs_traditional,
outputs=outputs_traditional,
title="Profit Prediction using Traditional ML Models"
)
with gr.Tab("Deep Learning Models"):
gr.Interface(
fn=lambda model_name, file: predict_deep_learning(model_name, file) if model_name != 'Random Forest' else predict_random_forest(file),
inputs=inputs_deep_learning,
outputs=outputs_deep_learning,
title="Crop Yield Prediction using Deep Learning Models and Random Forest"
)
demo.launch()
|