Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -15,8 +15,6 @@ import rasterio
|
|
15 |
import matplotlib.pyplot as plt
|
16 |
from tensorflow.keras.applications import ResNet50
|
17 |
from tensorflow.keras.models import Model
|
18 |
-
import cv2
|
19 |
-
import joblib
|
20 |
|
21 |
# Load crop data
|
22 |
def load_data():
|
@@ -57,64 +55,7 @@ def predict_traditional(model_name, year, state, crop, yield_):
|
|
57 |
else:
|
58 |
return "Model not found"
|
59 |
|
60 |
-
#
|
61 |
-
def train_random_forest_model():
|
62 |
-
def process_tiff(file_path):
|
63 |
-
with rasterio.open(file_path) as src:
|
64 |
-
tiff_data = src.read()
|
65 |
-
B2_image = tiff_data[1, :, :] # Assuming B2 is the second band
|
66 |
-
target_size = (50, 50)
|
67 |
-
B2_resized = cv2.resize(B2_image, target_size, interpolation=cv2.INTER_NEAREST)
|
68 |
-
return B2_resized.reshape(-1, 1)
|
69 |
-
|
70 |
-
data_dir = 'Data'
|
71 |
-
X_list = []
|
72 |
-
y_list = []
|
73 |
-
|
74 |
-
for root, dirs, files in os.walk(data_dir):
|
75 |
-
for file in files:
|
76 |
-
if file.endswith('.tiff'):
|
77 |
-
file_path = os.path.join(root, file)
|
78 |
-
X_list.append(process_tiff(file_path))
|
79 |
-
y_list.append(np.random.rand(2500)) # Replace with actual target data
|
80 |
-
|
81 |
-
X = np.vstack(X_list)
|
82 |
-
y = np.hstack(y_list)
|
83 |
-
|
84 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
85 |
-
|
86 |
-
model = RandomForestRegressor(n_estimators=100, random_state=42)
|
87 |
-
model.fit(X_train, y_train)
|
88 |
-
|
89 |
-
return model
|
90 |
-
|
91 |
-
rf_model = train_random_forest_model()
|
92 |
-
|
93 |
-
def predict_random_forest(file):
|
94 |
-
if file is not None:
|
95 |
-
def process_tiff(file_path):
|
96 |
-
with rasterio.open(file_path) as src:
|
97 |
-
tiff_data = src.read()
|
98 |
-
B2_image = tiff_data[1, :, :]
|
99 |
-
target_size = (50, 50)
|
100 |
-
B2_resized = cv2.resize(B2_image, target_size, interpolation=cv2.INTER_NEAREST)
|
101 |
-
return B2_resized.reshape(-1, 1)
|
102 |
-
|
103 |
-
tiff_processed = process_tiff(file.name)
|
104 |
-
prediction = rf_model.predict(tiff_processed)
|
105 |
-
prediction_reshaped = prediction.reshape((50, 50))
|
106 |
-
|
107 |
-
plt.figure(figsize=(10, 10))
|
108 |
-
plt.imshow(prediction_reshaped, cmap='viridis')
|
109 |
-
plt.colorbar()
|
110 |
-
plt.title('Yield Prediction for Single TIFF File')
|
111 |
-
plt.savefig('/tmp/rf_prediction_overlay.png')
|
112 |
-
|
113 |
-
return '/tmp/rf_prediction_overlay.png'
|
114 |
-
else:
|
115 |
-
return "No file uploaded"
|
116 |
-
|
117 |
-
# Load deep learning models
|
118 |
def load_deep_learning_model(model_name):
|
119 |
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(128, 128, 3))
|
120 |
base_model.trainable = False
|
@@ -182,9 +123,9 @@ def predict_deep_learning(model_name, file):
|
|
182 |
plt.colorbar()
|
183 |
|
184 |
# Save the plot to a file
|
185 |
-
plt.savefig('/tmp/
|
186 |
|
187 |
-
return '/tmp/
|
188 |
else:
|
189 |
return "No file uploaded"
|
190 |
else:
|
@@ -200,7 +141,7 @@ inputs_traditional = [
|
|
200 |
outputs_traditional = gr.Textbox(label='Predicted Profit')
|
201 |
|
202 |
inputs_deep_learning = [
|
203 |
-
gr.Dropdown(choices=list(deep_learning_models.keys())
|
204 |
gr.File(label='Upload TIFF File')
|
205 |
]
|
206 |
outputs_deep_learning = gr.Image(label='Prediction Overlay')
|
@@ -216,10 +157,10 @@ with gr.Blocks() as demo:
|
|
216 |
|
217 |
with gr.Tab("Deep Learning Models"):
|
218 |
gr.Interface(
|
219 |
-
fn=
|
220 |
inputs=inputs_deep_learning,
|
221 |
outputs=outputs_deep_learning,
|
222 |
-
title="Crop Yield Prediction using Deep Learning Models
|
223 |
)
|
224 |
|
225 |
demo.launch()
|
|
|
15 |
import matplotlib.pyplot as plt
|
16 |
from tensorflow.keras.applications import ResNet50
|
17 |
from tensorflow.keras.models import Model
|
|
|
|
|
18 |
|
19 |
# Load crop data
|
20 |
def load_data():
|
|
|
55 |
else:
|
56 |
return "Model not found"
|
57 |
|
58 |
+
# Load pre-trained deep learning models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
def load_deep_learning_model(model_name):
|
60 |
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(128, 128, 3))
|
61 |
base_model.trainable = False
|
|
|
123 |
plt.colorbar()
|
124 |
|
125 |
# Save the plot to a file
|
126 |
+
plt.savefig('/tmp/prediction_overlay.png')
|
127 |
|
128 |
+
return '/tmp/prediction_overlay.png'
|
129 |
else:
|
130 |
return "No file uploaded"
|
131 |
else:
|
|
|
141 |
outputs_traditional = gr.Textbox(label='Predicted Profit')
|
142 |
|
143 |
inputs_deep_learning = [
|
144 |
+
gr.Dropdown(choices=list(deep_learning_models.keys()), label='Model'),
|
145 |
gr.File(label='Upload TIFF File')
|
146 |
]
|
147 |
outputs_deep_learning = gr.Image(label='Prediction Overlay')
|
|
|
157 |
|
158 |
with gr.Tab("Deep Learning Models"):
|
159 |
gr.Interface(
|
160 |
+
fn=predict_deep_learning,
|
161 |
inputs=inputs_deep_learning,
|
162 |
outputs=outputs_deep_learning,
|
163 |
+
title="Crop Yield Prediction using Deep Learning Models"
|
164 |
)
|
165 |
|
166 |
demo.launch()
|