File size: 3,644 Bytes
397e766
 
20eae19
397e766
 
 
 
 
 
20eae19
 
 
 
 
 
 
 
 
b7bd810
20eae19
 
397e766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7bd810
397e766
 
20eae19
 
 
 
 
 
1665597
 
 
20eae19
4c6b01f
 
 
 
 
 
 
 
 
 
 
 
 
1665597
 
 
4c6b01f
397e766
 
 
4c6b01f
 
 
 
 
 
 
 
397e766
6d1db57
397e766
75ef3f7
397e766
 
 
 
 
 
 
 
 
 
4c6b01f
 
 
 
 
397e766
20eae19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import gradio as gr
from huggingface_hub import InferenceClient
import fitz  # PyMuPDF

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

def extract_text_from_pdf(pdf_path):
    # Open the provided PDF file
    doc = fitz.open(pdf_path)
    text = ""

    # Extract text from each page
    for page in doc:
        text += page.get_text()

    doc.close()  # Ensure the PDF file is closed
    return text

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        print(f"Token: {token}")  # Debugging statement to trace tokens
        yield response

def process_resume_and_respond(pdf_file, message, history, system_message, max_tokens, temperature, top_p):
    # Extract text from the PDF file
    resume_text = extract_text_from_pdf(pdf_file.name)
    # Combine the resume text with the user message
    combined_message = f"Resume:\n{resume_text}\n\nUser message:\n{message}"
    # Respond using the combined message
    response_gen = respond(combined_message, history, system_message, max_tokens, temperature, top_p)
    response = "".join([token for token in response_gen])
    return response

# Store the uploaded PDF content globally
uploaded_resume_text = ""

def upload_resume(pdf_file):
    global uploaded_resume_text
    uploaded_resume_text = extract_text_from_pdf(pdf_file.name)
    return "Resume uploaded successfully!"

def respond_with_resume(message, history, system_message, max_tokens, temperature, top_p):
    global uploaded_resume_text
    # Combine the uploaded resume text with the user message
    combined_message = f"Resume:\n{uploaded_resume_text}\n\nUser message:\n{message}"
    # Respond using the combined message
    response_gen = respond(combined_message, history, system_message, max_tokens, temperature, top_p)
    response = "".join([token for token in response_gen])
    return response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
upload_interface = gr.Interface(
    upload_resume,
    inputs=gr.File(label="Upload Resume PDF"),
    outputs=gr.Textbox(label="Upload Status"),
)

chat_interface = gr.ChatInterface(
    respond_with_resume,
    additional_inputs=[
        gr.Textbox(value="You are a Job Advisor Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

demo = gr.TabbedInterface(
    [upload_interface, chat_interface],
    ["Upload Resume", "Chat with Job Advisor"]
)

if __name__ == "__main__":
    demo.launch()