File size: 11,463 Bytes
0d91e34
 
 
 
 
634d7ce
0d91e34
634d7ce
0d91e34
 
634d7ce
 
 
0d91e34
2b313f8
634d7ce
0d91e34
 
634d7ce
0d91e34
 
 
 
 
 
 
634d7ce
 
0d91e34
634d7ce
 
06355df
 
0d91e34
 
 
 
 
 
 
 
03cfd4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d91e34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
015cdcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d91e34
015cdcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d91e34
015cdcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
734393f
 
 
 
a413a55
015cdcd
 
 
 
0d91e34
015cdcd
634d7ce
0d91e34
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
from fastapi import FastAPI, File, UploadFile
import uvicorn
from typing import List
from io import BytesIO
import numpy as np
import rasterio
from pydantic import BaseModel
import torch
from huggingface_hub import hf_hub_download
from mmcv import Config
from mmseg.apis import init_segmentor
import gradio as gr
from functools import partial
import time
import os

# Initialize the FastAPI app
app = FastAPI()

# Load the model and config
config_path = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification", 
                              filename="multi_temporal_crop_classification_Prithvi_100M.py", 
                              token=os.environ.get("token"))
ckpt = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification", 
                       filename='multi_temporal_crop_classification_Prithvi_100M.pth', 
                       token=os.environ.get("token"))

config = Config.fromfile(config_path)
config.model.backbone.pretrained = None
model = init_segmentor(config, ckpt, device='cpu')

# Use the test pipeline directly
custom_test_pipeline = model.cfg.data.test.pipeline

# Define the input/output model for FastAPI
class PredictionOutput(BaseModel):
    t1: List[float]
    t2: List[float]
    t3: List[float]
    prediction: List[float]

# Define the inference function
def inference_on_file(file_path, model, custom_test_pipeline):
    with rasterio.open(file_path) as src:
        img = src.read()

    # Apply preprocessing using the custom pipeline
    processed_img = apply_pipeline(custom_test_pipeline, img)
    
    # Run inference
    output = model.inference(processed_img)
    
    # Post-process the output to get the RGB and prediction images
    rgb1 = postprocess_output(output[0])
    rgb2 = postprocess_output(output[1])
    rgb3 = postprocess_output(output[2])
    
    return rgb1, rgb2, rgb3, output

def apply_pipeline(pipeline, img):
    # Implement your custom pipeline processing here
    # This could include normalization, resizing, etc.
    return img

def postprocess_output(output):
    # Convert the model's output into an RGB image or other formats as needed
    return output

@app.post("/predict/", response_model=PredictionOutput)
async def predict(file: UploadFile = File(...)):
    # Read the uploaded file
    target_image = BytesIO(await file.read())
    
    # Save the file temporarily if needed
    with open("temp_image.tif", "wb") as f:
        f.write(target_image.getvalue())

    # Run the prediction
    rgb1, rgb2, rgb3, output = inference_on_file("temp_image.tif", model, custom_test_pipeline)
    
    # Return the results
    return {
        "t1": rgb1.tolist(),
        "t2": rgb2.tolist(),
        "t3": rgb3.tolist(),
        "prediction": output.tolist()
    }

# Optional: Serve the Gradio interface (if you still want to use it with FastAPI)
cdl_color_map = [{'value': 1, 'label': 'Natural vegetation', 'rgb': (233,255,190)},
                 {'value': 2, 'label': 'Forest', 'rgb': (149,206,147)},
                 {'value': 3, 'label': 'Corn', 'rgb': (255,212,0)},
                 {'value': 4, 'label': 'Soybeans', 'rgb': (38,115,0)},
                 {'value': 5, 'label': 'Wetlands', 'rgb': (128,179,179)},
                 {'value': 6, 'label': 'Developed/Barren', 'rgb': (156,156,156)},
                 {'value': 7, 'label': 'Open Water', 'rgb': (77,112,163)},
                 {'value': 8, 'label': 'Winter Wheat', 'rgb': (168,112,0)},
                 {'value': 9, 'label': 'Alfalfa', 'rgb': (255,168,227)},
                 {'value': 10, 'label': 'Fallow/Idle cropland', 'rgb': (191,191,122)},
                 {'value': 11, 'label': 'Cotton', 'rgb':(255,38,38)},
                 {'value': 12, 'label': 'Sorghum', 'rgb':(255,158,15)},
                 {'value': 13, 'label': 'Other', 'rgb':(0,175,77)}]


def apply_color_map(rgb, color_map=cdl_color_map):
    
    
    rgb_mapped = rgb.copy()
    
    for map_tmp in cdl_color_map:
        
        for i in range(3):
            rgb_mapped[i] = np.where((rgb[0] == map_tmp['value']) & (rgb[1] == map_tmp['value']) & (rgb[2] == map_tmp['value']), map_tmp['rgb'][i], rgb_mapped[i])
    
    return rgb_mapped    
    

def stretch_rgb(rgb):
    
    ls_pct=0
    pLow, pHigh = np.percentile(rgb[~np.isnan(rgb)], (ls_pct,100-ls_pct))
    img_rescale = exposure.rescale_intensity(rgb, in_range=(pLow,pHigh))
    
    return img_rescale

def open_tiff(fname):
    
    with rasterio.open(fname, "r") as src:
        
        data = src.read()
        
    return data

def write_tiff(img_wrt, filename, metadata):

    """
    It writes a raster image to file.

    :param img_wrt: numpy array containing the data (can be 2D for single band or 3D for multiple bands)
    :param filename: file path to the output file
    :param metadata: metadata to use to write the raster to disk
    :return:
    """

    with rasterio.open(filename, "w", **metadata) as dest:

        if len(img_wrt.shape) == 2:
            
            img_wrt = img_wrt[None]

        for i in range(img_wrt.shape[0]):
            dest.write(img_wrt[i, :, :], i + 1)
    
    return filename
            

def get_meta(fname):
    
    with rasterio.open(fname, "r") as src:
        
        meta = src.meta
        
    return meta

def preprocess_example(example_list):
    
    example_list = [os.path.join(os.path.abspath(''), x) for x in example_list]
    
    return example_list


def inference_segmentor(model, imgs, custom_test_pipeline=None):
    """Inference image(s) with the segmentor.

    Args:
        model (nn.Module): The loaded segmentor.
        imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
            images.

    Returns:
        (list[Tensor]): The segmentation result.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = [LoadImageFromFile()] + cfg.data.test.pipeline[1:] if custom_test_pipeline == None else custom_test_pipeline
    test_pipeline = Compose(test_pipeline)
    # prepare data
    data = []
    imgs = imgs if isinstance(imgs, list) else [imgs]
    for img in imgs:
        img_data = {'img_info': {'filename': img}}
        img_data = test_pipeline(img_data)
        data.append(img_data)
    # print(data.shape)
    
    data = collate(data, samples_per_gpu=len(imgs))
    if next(model.parameters()).is_cuda:
        # data = collate(data, samples_per_gpu=len(imgs))
        # scatter to specified GPU
        data = scatter(data, [device])[0]
    else:
        # img_metas = scatter(data['img_metas'],'cpu')
        # data['img_metas'] = [i.data[0] for i in data['img_metas']]
        
        img_metas = data['img_metas'].data[0]
        img = data['img']
        data = {'img': img, 'img_metas':img_metas}
    
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result


def process_rgb(input, mask, indexes):

    
    rgb = stretch_rgb((input[indexes, :, :].transpose((1,2,0))/10000*255).astype(np.uint8))
    rgb = np.where(mask.transpose((1,2,0)) == 1, 0, rgb)
    rgb = np.where(rgb < 0, 0, rgb)
    rgb = np.where(rgb > 255, 255, rgb)

    return rgb

def inference_on_file(target_image, model, custom_test_pipeline):

    target_image = target_image.name
    time_taken=-1
    st = time.time()
    print('Running inference...')
    result = inference_segmentor(model, target_image, custom_test_pipeline)
    print("Output has shape: " + str(result[0].shape))

    ##### get metadata mask
    input = open_tiff(target_image)
    meta = get_meta(target_image)
    mask = np.where(input == meta['nodata'], 1, 0)
    mask = np.max(mask, axis=0)[None]
    
    rgb1 = process_rgb(input, mask, [2, 1, 0])
    rgb2 = process_rgb(input, mask, [8, 7, 6])
    rgb3 = process_rgb(input, mask, [14, 13, 12])

    result[0] = np.where(mask == 1, 0, result[0])

    et = time.time()
    time_taken = np.round(et - st, 1)
    print(f'Inference completed in {str(time_taken)} seconds')
    
    output=result[0][0] + 1
    output = np.vstack([output[None], output[None], output[None]]).astype(np.uint8)
    output=apply_color_map(output).transpose((1,2,0))
        
    return rgb1,rgb2,rgb3,output

def process_test_pipeline(custom_test_pipeline, bands=None):
    
    # change extracted bands if necessary
    if bands is not None:
        
        extract_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'] == 'BandsExtract' ]
        
        if len(extract_index) > 0:
            
            custom_test_pipeline[extract_index[0]]['bands'] = eval(bands)
            
    collect_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'].find('Collect') > -1]
    
    # adapt collected keys if necessary
    if len(collect_index) > 0:
        
        keys = ['img_info', 'filename', 'ori_filename', 'img', 'img_shape', 'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg']
        custom_test_pipeline[collect_index[0]]['meta_keys'] = keys
    
    return custom_test_pipeline

config = Config.fromfile(config_path)
config.model.backbone.pretrained=None
model = init_segmentor(config, ckpt, device='cpu')
custom_test_pipeline=process_test_pipeline(model.cfg.data.test.pipeline, None)

func = partial(inference_on_file, model=model, custom_test_pipeline=custom_test_pipeline)

with gr.Blocks() as demo:
   
    gr.Markdown(value='# Prithvi multi temporal crop classification')
    gr.Markdown(value='''Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data. This demo showcases how the model was finetuned to classify crop and other land use categories using multi temporal data. More detailes can be found [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification).\n
    The user needs to provide an HLS geotiff image, including 18 bands for 3 time-step, and each time-step includes the channels described above (Blue, Green, Red, Narrow NIR, SWIR, SWIR 2) in order.
    ''')
    with gr.Row():
        with gr.Column():
            inp = gr.File()
            btn = gr.Button("Submit")
            
    with gr.Row():
        inp1=gr.Image(image_mode='RGB', scale=10, label='T1')
        inp2=gr.Image(image_mode='RGB', scale=10, label='T2')
        inp3=gr.Image(image_mode='RGB', scale=10, label='T3')
        out = gr.Image(image_mode='RGB', scale=10, label='Model prediction')
        # gr.Image(value='Legend.png', image_mode='RGB', scale=2, show_label=False)
    
    btn.click(fn=func, inputs=inp, outputs=[inp1, inp2, inp3, out])
    
    with gr.Row():
        with gr.Column():
            gr.Examples(examples=["chip_102_345_merged.tif",
                             "chip_104_104_merged.tif",
                             "chip_109_421_merged.tif"],
                            inputs=inp,
                            outputs=[inp1, inp2, inp3, out],
                            preprocess=preprocess_example,
                            fn=func,
                            cache_examples=True)
        with gr.Column():
            gr.Markdown(value='### Model prediction legend')
            gr.Image(value='Legend.png', image_mode='RGB', show_label=False)
    

demo.launch() 

if __name__ == "__main__":
    run_gradio_interface()
    uvicorn.run(app, host="0.0.0.0", port=8000)