Spaces:
Sleeping
Sleeping
Delete app.py
#1
by
atiyakhan15
- opened
app.py
DELETED
@@ -1,270 +0,0 @@
|
|
1 |
-
######### pull files
|
2 |
-
import os
|
3 |
-
from huggingface_hub import hf_hub_download
|
4 |
-
config_path=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification",
|
5 |
-
filename="multi_temporal_crop_classification_Prithvi_100M.py",
|
6 |
-
token=os.environ.get("token"))
|
7 |
-
ckpt=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification",
|
8 |
-
filename='multi_temporal_crop_classification_Prithvi_100M.pth',
|
9 |
-
token=os.environ.get("token"))
|
10 |
-
##########
|
11 |
-
import argparse
|
12 |
-
from mmcv import Config
|
13 |
-
|
14 |
-
from mmseg.models import build_segmentor
|
15 |
-
|
16 |
-
from mmseg.datasets.pipelines import Compose, LoadImageFromFile
|
17 |
-
|
18 |
-
import rasterio
|
19 |
-
import torch
|
20 |
-
|
21 |
-
from mmseg.apis import init_segmentor
|
22 |
-
|
23 |
-
from mmcv.parallel import collate, scatter
|
24 |
-
|
25 |
-
import numpy as np
|
26 |
-
import glob
|
27 |
-
import os
|
28 |
-
|
29 |
-
import time
|
30 |
-
|
31 |
-
import numpy as np
|
32 |
-
import gradio as gr
|
33 |
-
from functools import partial
|
34 |
-
|
35 |
-
import pdb
|
36 |
-
|
37 |
-
import matplotlib.pyplot as plt
|
38 |
-
|
39 |
-
from skimage import exposure
|
40 |
-
|
41 |
-
cdl_color_map = [{'value': 1, 'label': 'Natural vegetation', 'rgb': (233,255,190)},
|
42 |
-
{'value': 2, 'label': 'Forest', 'rgb': (149,206,147)},
|
43 |
-
{'value': 3, 'label': 'Corn', 'rgb': (255,212,0)},
|
44 |
-
{'value': 4, 'label': 'Soybeans', 'rgb': (38,115,0)},
|
45 |
-
{'value': 5, 'label': 'Wetlands', 'rgb': (128,179,179)},
|
46 |
-
{'value': 6, 'label': 'Developed/Barren', 'rgb': (156,156,156)},
|
47 |
-
{'value': 7, 'label': 'Open Water', 'rgb': (77,112,163)},
|
48 |
-
{'value': 8, 'label': 'Winter Wheat', 'rgb': (168,112,0)},
|
49 |
-
{'value': 9, 'label': 'Alfalfa', 'rgb': (255,168,227)},
|
50 |
-
{'value': 10, 'label': 'Fallow/Idle cropland', 'rgb': (191,191,122)},
|
51 |
-
{'value': 11, 'label': 'Cotton', 'rgb':(255,38,38)},
|
52 |
-
{'value': 12, 'label': 'Sorghum', 'rgb':(255,158,15)},
|
53 |
-
{'value': 13, 'label': 'Other', 'rgb':(0,175,77)}]
|
54 |
-
|
55 |
-
|
56 |
-
def apply_color_map(rgb, color_map=cdl_color_map):
|
57 |
-
|
58 |
-
|
59 |
-
rgb_mapped = rgb.copy()
|
60 |
-
|
61 |
-
for map_tmp in cdl_color_map:
|
62 |
-
|
63 |
-
for i in range(3):
|
64 |
-
rgb_mapped[i] = np.where((rgb[0] == map_tmp['value']) & (rgb[1] == map_tmp['value']) & (rgb[2] == map_tmp['value']), map_tmp['rgb'][i], rgb_mapped[i])
|
65 |
-
|
66 |
-
return rgb_mapped
|
67 |
-
|
68 |
-
|
69 |
-
def stretch_rgb(rgb):
|
70 |
-
|
71 |
-
ls_pct=0
|
72 |
-
pLow, pHigh = np.percentile(rgb[~np.isnan(rgb)], (ls_pct,100-ls_pct))
|
73 |
-
img_rescale = exposure.rescale_intensity(rgb, in_range=(pLow,pHigh))
|
74 |
-
|
75 |
-
return img_rescale
|
76 |
-
|
77 |
-
def open_tiff(fname):
|
78 |
-
|
79 |
-
with rasterio.open(fname, "r") as src:
|
80 |
-
|
81 |
-
data = src.read()
|
82 |
-
|
83 |
-
return data
|
84 |
-
|
85 |
-
def write_tiff(img_wrt, filename, metadata):
|
86 |
-
|
87 |
-
"""
|
88 |
-
It writes a raster image to file.
|
89 |
-
|
90 |
-
:param img_wrt: numpy array containing the data (can be 2D for single band or 3D for multiple bands)
|
91 |
-
:param filename: file path to the output file
|
92 |
-
:param metadata: metadata to use to write the raster to disk
|
93 |
-
:return:
|
94 |
-
"""
|
95 |
-
|
96 |
-
with rasterio.open(filename, "w", **metadata) as dest:
|
97 |
-
|
98 |
-
if len(img_wrt.shape) == 2:
|
99 |
-
|
100 |
-
img_wrt = img_wrt[None]
|
101 |
-
|
102 |
-
for i in range(img_wrt.shape[0]):
|
103 |
-
dest.write(img_wrt[i, :, :], i + 1)
|
104 |
-
|
105 |
-
return filename
|
106 |
-
|
107 |
-
|
108 |
-
def get_meta(fname):
|
109 |
-
|
110 |
-
with rasterio.open(fname, "r") as src:
|
111 |
-
|
112 |
-
meta = src.meta
|
113 |
-
|
114 |
-
return meta
|
115 |
-
|
116 |
-
def preprocess_example(example_list):
|
117 |
-
|
118 |
-
example_list = [os.path.join(os.path.abspath(''), x) for x in example_list]
|
119 |
-
|
120 |
-
return example_list
|
121 |
-
|
122 |
-
|
123 |
-
def inference_segmentor(model, imgs, custom_test_pipeline=None):
|
124 |
-
"""Inference image(s) with the segmentor.
|
125 |
-
|
126 |
-
Args:
|
127 |
-
model (nn.Module): The loaded segmentor.
|
128 |
-
imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
|
129 |
-
images.
|
130 |
-
|
131 |
-
Returns:
|
132 |
-
(list[Tensor]): The segmentation result.
|
133 |
-
"""
|
134 |
-
cfg = model.cfg
|
135 |
-
device = next(model.parameters()).device # model device
|
136 |
-
# build the data pipeline
|
137 |
-
test_pipeline = [LoadImageFromFile()] + cfg.data.test.pipeline[1:] if custom_test_pipeline == None else custom_test_pipeline
|
138 |
-
test_pipeline = Compose(test_pipeline)
|
139 |
-
# prepare data
|
140 |
-
data = []
|
141 |
-
imgs = imgs if isinstance(imgs, list) else [imgs]
|
142 |
-
for img in imgs:
|
143 |
-
img_data = {'img_info': {'filename': img}}
|
144 |
-
img_data = test_pipeline(img_data)
|
145 |
-
data.append(img_data)
|
146 |
-
# print(data.shape)
|
147 |
-
|
148 |
-
data = collate(data, samples_per_gpu=len(imgs))
|
149 |
-
if next(model.parameters()).is_cuda:
|
150 |
-
# data = collate(data, samples_per_gpu=len(imgs))
|
151 |
-
# scatter to specified GPU
|
152 |
-
data = scatter(data, [device])[0]
|
153 |
-
else:
|
154 |
-
# img_metas = scatter(data['img_metas'],'cpu')
|
155 |
-
# data['img_metas'] = [i.data[0] for i in data['img_metas']]
|
156 |
-
|
157 |
-
img_metas = data['img_metas'].data[0]
|
158 |
-
img = data['img']
|
159 |
-
data = {'img': img, 'img_metas':img_metas}
|
160 |
-
|
161 |
-
with torch.no_grad():
|
162 |
-
result = model(return_loss=False, rescale=True, **data)
|
163 |
-
return result
|
164 |
-
|
165 |
-
|
166 |
-
def process_rgb(input, mask, indexes):
|
167 |
-
|
168 |
-
|
169 |
-
rgb = stretch_rgb((input[indexes, :, :].transpose((1,2,0))/10000*255).astype(np.uint8))
|
170 |
-
rgb = np.where(mask.transpose((1,2,0)) == 1, 0, rgb)
|
171 |
-
rgb = np.where(rgb < 0, 0, rgb)
|
172 |
-
rgb = np.where(rgb > 255, 255, rgb)
|
173 |
-
|
174 |
-
return rgb
|
175 |
-
|
176 |
-
def inference_on_file(target_image, model, custom_test_pipeline):
|
177 |
-
|
178 |
-
target_image = target_image.name
|
179 |
-
time_taken=-1
|
180 |
-
st = time.time()
|
181 |
-
print('Running inference...')
|
182 |
-
result = inference_segmentor(model, target_image, custom_test_pipeline)
|
183 |
-
print("Output has shape: " + str(result[0].shape))
|
184 |
-
|
185 |
-
##### get metadata mask
|
186 |
-
input = open_tiff(target_image)
|
187 |
-
meta = get_meta(target_image)
|
188 |
-
mask = np.where(input == meta['nodata'], 1, 0)
|
189 |
-
mask = np.max(mask, axis=0)[None]
|
190 |
-
|
191 |
-
rgb1 = process_rgb(input, mask, [2, 1, 0])
|
192 |
-
rgb2 = process_rgb(input, mask, [8, 7, 6])
|
193 |
-
rgb3 = process_rgb(input, mask, [14, 13, 12])
|
194 |
-
|
195 |
-
result[0] = np.where(mask == 1, 0, result[0])
|
196 |
-
|
197 |
-
et = time.time()
|
198 |
-
time_taken = np.round(et - st, 1)
|
199 |
-
print(f'Inference completed in {str(time_taken)} seconds')
|
200 |
-
|
201 |
-
output=result[0][0] + 1
|
202 |
-
output = np.vstack([output[None], output[None], output[None]]).astype(np.uint8)
|
203 |
-
output=apply_color_map(output).transpose((1,2,0))
|
204 |
-
|
205 |
-
return rgb1,rgb2,rgb3,output
|
206 |
-
|
207 |
-
def process_test_pipeline(custom_test_pipeline, bands=None):
|
208 |
-
|
209 |
-
# change extracted bands if necessary
|
210 |
-
if bands is not None:
|
211 |
-
|
212 |
-
extract_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'] == 'BandsExtract' ]
|
213 |
-
|
214 |
-
if len(extract_index) > 0:
|
215 |
-
|
216 |
-
custom_test_pipeline[extract_index[0]]['bands'] = eval(bands)
|
217 |
-
|
218 |
-
collect_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'].find('Collect') > -1]
|
219 |
-
|
220 |
-
# adapt collected keys if necessary
|
221 |
-
if len(collect_index) > 0:
|
222 |
-
|
223 |
-
keys = ['img_info', 'filename', 'ori_filename', 'img', 'img_shape', 'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg']
|
224 |
-
custom_test_pipeline[collect_index[0]]['meta_keys'] = keys
|
225 |
-
|
226 |
-
return custom_test_pipeline
|
227 |
-
|
228 |
-
config = Config.fromfile(config_path)
|
229 |
-
config.model.backbone.pretrained=None
|
230 |
-
model = init_segmentor(config, ckpt, device='cpu')
|
231 |
-
custom_test_pipeline=process_test_pipeline(model.cfg.data.test.pipeline, None)
|
232 |
-
|
233 |
-
func = partial(inference_on_file, model=model, custom_test_pipeline=custom_test_pipeline)
|
234 |
-
|
235 |
-
with gr.Blocks() as demo:
|
236 |
-
|
237 |
-
gr.Markdown(value='# Prithvi multi temporal crop classification')
|
238 |
-
gr.Markdown(value='''Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data. This demo showcases how the model was finetuned to classify crop and other land use categories using multi temporal data. More detailes can be found [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification).\n
|
239 |
-
The user needs to provide an HLS geotiff image, including 18 bands for 3 time-step, and each time-step includes the channels described above (Blue, Green, Red, Narrow NIR, SWIR, SWIR 2) in order.
|
240 |
-
''')
|
241 |
-
with gr.Row():
|
242 |
-
with gr.Column():
|
243 |
-
inp = gr.File()
|
244 |
-
btn = gr.Button("Submit")
|
245 |
-
|
246 |
-
with gr.Row():
|
247 |
-
inp1=gr.Image(image_mode='RGB', scale=10, label='T1')
|
248 |
-
inp2=gr.Image(image_mode='RGB', scale=10, label='T2')
|
249 |
-
inp3=gr.Image(image_mode='RGB', scale=10, label='T3')
|
250 |
-
out = gr.Image(image_mode='RGB', scale=10, label='Model prediction')
|
251 |
-
# gr.Image(value='Legend.png', image_mode='RGB', scale=2, show_label=False)
|
252 |
-
|
253 |
-
btn.click(fn=func, inputs=inp, outputs=[inp1, inp2, inp3, out])
|
254 |
-
|
255 |
-
with gr.Row():
|
256 |
-
with gr.Column():
|
257 |
-
gr.Examples(examples=["chip_102_345_merged.tif",
|
258 |
-
"chip_104_104_merged.tif",
|
259 |
-
"chip_109_421_merged.tif"],
|
260 |
-
inputs=inp,
|
261 |
-
outputs=[inp1, inp2, inp3, out],
|
262 |
-
preprocess=preprocess_example,
|
263 |
-
fn=func,
|
264 |
-
cache_examples=True)
|
265 |
-
with gr.Column():
|
266 |
-
gr.Markdown(value='### Model prediction legend')
|
267 |
-
gr.Image(value='Legend.png', image_mode='RGB', show_label=False)
|
268 |
-
|
269 |
-
|
270 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|