Spaces:
Runtime error
Runtime error
import gradio as gr | |
from loadimg import load_img | |
import spaces | |
from transformers import AutoModelForImageSegmentation | |
import torch | |
from torchvision import transforms | |
import moviepy.editor as mp | |
from pydub import AudioSegment | |
from PIL import Image | |
import numpy as np | |
import os | |
import tempfile | |
import uuid | |
from concurrent.futures import ThreadPoolExecutor | |
import torch.nn as nn | |
import torch.cuda.amp # for mixed precision training | |
# Enable tensor cores for faster computation | |
torch.set_float32_matmul_precision("high") | |
torch.backends.cudnn.benchmark = True # Enable cudnn autotuner | |
# Initialize model with optimization flags | |
birefnet = AutoModelForImageSegmentation.from_pretrained( | |
"ZhengPeng7/BiRefNet", trust_remote_code=True | |
) | |
birefnet.to("cuda").eval() # Ensure model is in eval mode | |
birefnet = torch.jit.script(birefnet) # JIT compilation for faster inference | |
# Pre-compile transforms for better performance | |
transform_image = transforms.Compose([ | |
transforms.Resize((1024, 1024), antialias=True), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
]) | |
# Increased batch size for better GPU utilization | |
BATCH_SIZE = 8 # Increased from 3 | |
NUM_WORKERS = 4 # For parallel processing | |
# Create a thread pool for parallel processing | |
executor = ThreadPoolExecutor(max_workers=NUM_WORKERS) | |
def process_batch(batch_data): | |
"""Process a batch of frames in parallel""" | |
images, backgrounds, image_sizes = zip(*batch_data) | |
# Stack images for batch processing | |
input_tensor = torch.stack(images).to("cuda") | |
# Use automatic mixed precision for faster computation | |
with torch.cuda.amp.autocast(): | |
with torch.no_grad(): | |
preds = birefnet(input_tensor)[-1].sigmoid().cpu() | |
processed_frames = [] | |
for pred, bg, size in zip(preds, backgrounds, image_sizes): | |
mask = transforms.ToPILImage()(pred.squeeze()).resize(size) | |
if isinstance(bg, str) and bg.startswith("#"): | |
color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5)) | |
background = Image.new("RGBA", size, color_rgb + (255,)) | |
elif isinstance(bg, Image.Image): | |
background = bg.convert("RGBA").resize(size) | |
else: | |
background = Image.open(bg).convert("RGBA").resize(size) | |
# Use PIL's faster composite operation | |
image = Image.composite(images[0].resize(size), background, mask) | |
processed_frames.append(np.array(image)) | |
return processed_frames | |
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"): | |
try: | |
# Load video more efficiently | |
video = mp.VideoFileClip(vid, audio_buffersize=2000) | |
if fps == 0: | |
fps = video.fps | |
audio = video.audio | |
# Pre-calculate video parameters | |
total_frames = int(video.fps * video.duration) | |
frames = list(video.iter_frames(fps=fps)) # Load all frames at once | |
# Pre-process background if using video | |
if bg_type == "Video": | |
bg_video_clip = mp.VideoFileClip(bg_video) | |
if bg_video_clip.duration < video.duration: | |
if video_handling == "slow_down": | |
bg_video_clip = bg_video_clip.fx(mp.vfx.speedx, | |
factor=video.duration / bg_video_clip.duration) | |
else: | |
multiplier = int(video.duration / bg_video_clip.duration + 1) | |
bg_video_clip = mp.concatenate_videoclips([bg_video_clip] * multiplier) | |
background_frames = list(bg_video_clip.iter_frames(fps=fps)) | |
# Process frames in batches | |
processed_frames = [] | |
for i in range(0, len(frames), BATCH_SIZE): | |
batch_frames = frames[i:i + BATCH_SIZE] | |
batch_data = [] | |
for j, frame in enumerate(batch_frames): | |
pil_image = Image.fromarray(frame) | |
image_size = pil_image.size | |
transformed_image = transform_image(pil_image) | |
if bg_type == "Color": | |
bg = color | |
elif bg_type == "Image": | |
bg = bg_image | |
else: # Video | |
frame_idx = (i + j) % len(background_frames) | |
bg = Image.fromarray(background_frames[frame_idx]) | |
batch_data.append((transformed_image, bg, image_size)) | |
# Process batch | |
batch_results = process_batch(batch_data) | |
processed_frames.extend(batch_results) | |
# Yield progress updates | |
if len(batch_results) > 0: | |
yield batch_results[-1], None | |
# Create output video | |
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps) | |
if audio is not None: | |
processed_video = processed_video.set_audio(audio) | |
# Use temporary file | |
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file: | |
output_path = tmp_file.name | |
processed_video.write_videofile(output_path, codec="libx264", | |
preset='ultrafast', threads=NUM_WORKERS) | |
yield gr.update(visible=False), gr.update(visible=True) | |
yield processed_frames[-1], output_path | |
except Exception as e: | |
print(f"Error: {e}") | |
yield gr.update(visible=False), gr.update(visible=True) | |
yield None, f"Error processing video: {e}" | |
with gr.Blocks(theme=gr.themes.Ocean()) as demo: | |
with gr.Row(): | |
in_video = gr.Video(label="Input Video", interactive=True) | |
stream_image = gr.Image(label="Streaming Output", visible=False) | |
out_video = gr.Video(label="Final Output Video") | |
submit_button = gr.Button("Change Background", interactive=True) | |
with gr.Row(): | |
fps_slider = gr.Slider( | |
minimum=0, | |
maximum=60, | |
step=1, | |
value=0, | |
label="Output FPS (0 will inherit the original fps value)", | |
interactive=True | |
) | |
bg_type = gr.Radio(["Color", "Image", "Video"], label="Background Type", value="Color", interactive=True) | |
color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True, interactive=True) | |
bg_image = gr.Image(label="Background Image", type="filepath", visible=False, interactive=True) | |
bg_video = gr.Video(label="Background Video", visible=False, interactive=True) | |
with gr.Column(visible=False) as video_handling_options: | |
video_handling_radio = gr.Radio(["slow_down", "loop"], label="Video Handling", value="slow_down", interactive=True) | |
def update_visibility(bg_type): | |
if bg_type == "Color": | |
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) | |
elif bg_type == "Image": | |
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) | |
elif bg_type == "Video": | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True) | |
else: | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) | |
bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image, bg_video, video_handling_options]) | |
examples = gr.Examples( | |
[ | |
["rickroll-2sec.mp4", "Video", None, "background.mp4"], | |
["rickroll-2sec.mp4", "Image", "images.webp", None], | |
["rickroll-2sec.mp4", "Color", None, None], | |
], | |
inputs=[in_video, bg_type, bg_image, bg_video], | |
outputs=[stream_image, out_video], | |
fn=fn, | |
cache_examples=True, | |
cache_mode="eager", | |
) | |
submit_button.click( | |
fn, | |
inputs=[in_video, bg_type, bg_image, bg_video, color_picker, fps_slider, video_handling_radio], | |
outputs=[stream_image, out_video], | |
) | |
if __name__ == "__main__": | |
demo.launch(show_error=True) |