news-summarizer / utils.py
saranimje's picture
Add files
a7ac876 verified
# ==========================
# Data Handling & Storage
# ==========================
import json
import ast
import pandas as pd
import numpy as np
# ==========================
# Web Scraping & Data Retrieval
# ==========================
import requests
import httpx
import feedparser
import concurrent.futures
from bs4 import BeautifulSoup
from googlesearch import search
from urllib.parse import urlparse
# ==========================
# Natural Language Processing (NLP)
# ==========================
import nltk
import spacy
import gensim
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
from gensim.models import LdaModel
from gensim.corpora import Dictionary
from transformers import pipeline
from deep_translator import GoogleTranslator
from gtts import gTTS # Text-to-speech
# ==========================
# Machine Learning & Text Analysis
# ==========================
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer, ENGLISH_STOP_WORDS
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.decomposition import NMF, LatentDirichletAllocation
from sklearn.model_selection import RandomizedSearchCV
# ==========================
# Data Visualization
# ==========================
import matplotlib.pyplot as plt
import seaborn as sns
# ==========================
# Utility & Performance Optimization
# ==========================
import re
import os
import io
from collections import Counter
from tqdm import tqdm # progress bar
def fetch_news_data(company_name: str, article_number: int):
excluded_domains = ["youtube.com", "en.wikipedia.org", "m.economictimes.com", "www.prnewswire.com", "economictimes.indiatimes.com", "www.moneycontrol.com"]
def is_valid_news_article(url, company_name):
try:
domain = urlparse(url).netloc # extracts the domain
if company_name.lower() in domain.lower() or any(excluded_domain in domain for excluded_domain in excluded_domains):
return False
return True
except Exception:
return False # handle unexpected errors
def get_top_articles(company_name, article_number):
query = f"{company_name} latest news article"
valid_urls = []
for url in search(query, num_results = article_number*2):
if is_valid_news_article(url, company_name):
valid_urls.append(url)
if len(valid_urls) > article_number+1:
break
return valid_urls
def extract_article_data(url):
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36"
}
try:
response = requests.get(url, headers=headers)
response.raise_for_status() # handle HTTP errors
soup = BeautifulSoup(response.content, 'html.parser')
# extract title
title = soup.title.string.strip() if soup.title else None
source = url.split('/')[2] # Extract domain
# validate data
if not title:
return None
return {"title": title, "link": url, "source": source}
except (requests.exceptions.RequestException, AttributeError):
return None # skip articles with invalid data
def main(company_name, article_number):
urls = get_top_articles(company_name, article_number)
# extract and validate article data
articles_data = [extract_article_data(url) for url in urls]
articles_data = [article for article in articles_data if article] # remove None values
# create DataFrame only if valid articles exist
if articles_data:
df = pd.DataFrame(articles_data)
else:
df = pd.DataFrame(columns=["title", "link"]) # empty DataFrame if nothing was found
return df
df = main(company_name, article_number+1)
news_df_output = df[["title", "source"]].rename(columns={"title": "Headline", "source": "Source"})
news_df_output["Source"] = news_df_output["Source"].str.replace(r"^www\.", "", regex=True).str.split('.').str[0]
yield {"news_df_output": news_df_output}
def get_article_text(url):
try:
headers = {'User-Agent': 'Mozilla/5.0'}
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, "html.parser")
# remove unwanted elements
for unwanted in soup.select("nav, aside, footer, header, .ad, .advertisement, .promo, .sidebar, .related-articles"):
unwanted.extract()
# try extracting from known article containers
article_body = soup.find(['article', 'div', 'section'], class_=['article-body', 'post-body', 'entry-content', 'main-content'])
if article_body:
paragraphs = article_body.find_all('p')
article_text = " ".join([p.get_text() for p in paragraphs]).strip()
return article_text if article_text else None # return None if empty
# fallback to all <p> tags
paragraphs = soup.find_all('p')
article_text = " ".join([p.get_text() for p in paragraphs]).strip()
return article_text if article_text else None # return None if empty
except Exception:
return None # return None in case of an error
df['article_text'] = df['link'].apply(get_article_text)
df = df.reset_index(drop=True)
block_patterns = [
# Error messages (with variations)
r'Oops[!,\.]? something went wrong',
r'An error has occurred',
r'This content is not available',
r'Please enable JavaScript to continue',
r'Error loading content',
r'Follow Us',
# JavaScript patterns
r'var .*?;',
r'alert\(.*?\)',
r'console\.log\(.*?\)',
r'<script.*?</script>',
r'<noscript>.*?</noscript>',
r'<style.*?</style>',
# Loading or restricted content messages
r'Loading[\.]*',
r'You must be logged in to view this content',
r'This content is restricted',
r'Access denied',
r'Please disable your ad blocker',
# GDPR and cookie consent banners
r'This site uses cookies',
r'We use cookies to improve your experience',
r'By using this site, you agree to our use of cookies',
r'Accept Cookies',
# Stories or content teasers with any number
r'\d+\s*Stories',
# Miscellaneous
r'<iframe.*?</iframe>',
r'<meta.*?>',
r'<link.*?>',
r'Refresh the page and try again',
r'Click here if the page does not load',
r'© [0-9]{4}.*? All rights reserved',
r'Unauthorized access',
r'Terms of Service',
r'Privacy Policy',
r'<.*?>',
]
pattern = '|'.join(block_patterns)
df['article_text'] = df['article_text'].str.replace(pattern, '', regex=True).str.strip()
df['article_text'] = df['article_text'].str.replace(r'\s+', ' ', regex=True).str.strip()
custom_stop_words = set(ENGLISH_STOP_WORDS.union({company_name.lower(), 'company', 'ttm', 'rs'}))
# add numeric values (integer, decimal, comma-separated, monetary)
numeric_patterns = re.compile(r'\b\d+(?:[\.,]\d+)?(?:,\d+)*\b|\$\d+(?:[\.,]\d+)?')
numeric_matches = set(re.findall(numeric_patterns, ' '.join(df['article_text'])))
custom_stop_words.update(numeric_matches)
# remove unwanted unicode characters (like \u2018, \u2019, etc.)
unicode_patterns = re.compile(r'[\u2018\u2019\u2020\u2021\u2014]') # Add more if needed
df['article_text'] = df['article_text'].apply(lambda x: unicode_patterns.sub('', x))
custom_stop_words = list(custom_stop_words)
summarizer = pipeline("summarization", model="google/long-t5-tglobal-base")
def generate_summary(text):
try:
if len(text.split()) > 50: # skip very short texts
summary = summarizer(text, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
return summary
else:
return text
except Exception as e:
print(f"Error processing text: {e}")
return None
# apply summarization to the 'article_text' column
df['summary'] = df['article_text'].apply(generate_summary)
# load a pre-trained BERT-based sentiment model from Hugging Faces
sentiment_pipeline = pipeline("sentiment-analysis")
def analyze_sentiment(text):
"""Analyze sentiment with a confidence-based neutral zone."""
if not text.strip():
return "Neutral"
try:
result = sentiment_pipeline(text)[0]
sentiment_label = result["label"]
confidence = round(result["score"], 2)
if confidence < 0.7:
return "Neutral"
return f"{sentiment_label.capitalize()} ({confidence})"
except Exception:
return "Error in sentiment analysis."
# apply sentiment analysis on the summary column
df['sentiment'] = df['summary'].apply(analyze_sentiment)
df['sentiment_label'] = df['sentiment'].str.extract(r'(Positive|Negative|Neutral)')
sentiment_bars = plt.figure(figsize=(7, 7))
sns.countplot(x=df['sentiment_label'], palette={'Positive': 'green', 'Negative': 'red', 'Neutral': 'gray'})
plt.title("Sentiment Analysis of Articles")
plt.xlabel("Sentiment")
plt.ylabel("Count")
# save the figure as an image file to use in gradio interface
sentiment_bars_file = "sentiment_bars.png"
sentiment_bars.savefig(sentiment_bars_file)
plt.close(sentiment_bars)
sentiment_counts = df['sentiment_label'].value_counts()
colors = {'Positive': 'green', 'Negative': 'red', 'Neutral': 'gray'}
sentiment_pie = plt.figure(figsize=(7, 7))
plt.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', colors=[colors[label] for label in sentiment_counts.index])
plt.title("Sentiment Distribution of Articles")
sentiment_pie_file = "sentiment_pie.png"
sentiment_pie.savefig(sentiment_pie_file)
plt.close(sentiment_pie)
df['combined_text'] = df['title'] + ' ' + df['summary'] # combine text for analysis
vectorizer = TfidfVectorizer(max_features=1000, stop_words=custom_stop_words)
tfidf = vectorizer.fit_transform(df['combined_text'])
n_topics = 5 # number of topics
nmf = NMF(n_components=n_topics, random_state=42)
W = nmf.fit_transform(tfidf)
H = nmf.components_
feature_names = vectorizer.get_feature_names_out()
topics = []
for topic_idx, topic in enumerate(H):
top_words = [feature_names[i] for i in topic.argsort()[-5:]][::-1] # 5 words per topic
topics.append(", ".join(top_words))
def get_top_topics(row):
topic_indices = W[row].argsort()[-3:][::-1] # get top 3 topics
return [topics[i] for i in topic_indices]
df['top_topics'] = [get_top_topics(i) for i in range(len(df))]
df['dominant_topic'] = W.argmax(axis=1)
df['topic_distribution'] = W.tolist()
similarity_matrix = cosine_similarity(W)
df['similarity_scores'] = similarity_matrix.mean(axis=1)
df['most_similar_article'] = similarity_matrix.argsort(axis=1)[:, -2] # second highest value
df['least_similar_article'] = similarity_matrix.argsort(axis=1)[:, 0] # lowest value
similarity_heatmap = plt.figure(figsize=(10, 8))
sns.heatmap(similarity_matrix, annot=True, fmt=".2f", cmap="coolwarm", xticklabels=False, yticklabels=False)
plt.title("Comparative Analysis of News Coverage Across Articles")
comparisons = []
for i in range(len(df)):
# find most similar and least similar articles
similar_idx = similarity_matrix[i].argsort()[-2] # most similar (excluding itself)
least_similar_idx = similarity_matrix[i].argsort()[0] # least similar
# build comparison text
comparison = {
"Most Similar": f"Article {i + 1} focuses on '{topics[df['dominant_topic'][i]]}', similar to Article {similar_idx + 1} which also discusses '{topics[df['dominant_topic'][similar_idx]]}'.",
"Least Similar": f"Article {i + 1} focuses on '{topics[df['dominant_topic'][i]]}', contrasting with Article {least_similar_idx + 1} which discusses '{topics[df['dominant_topic'][least_similar_idx]]}'."
}
comparisons.append(comparison)
df['coverage_comparison'] = comparisons
# find common and unique topics
all_topics = df['dominant_topic'].tolist()
topic_counter = Counter(all_topics)
common_topics = [topics[i] for i, count in topic_counter.items() if count > 1]
unique_topics = [topics[i] for i, count in topic_counter.items() if count == 1]
topic_overlap = {
"Common Topics": common_topics,
"Unique Topics": unique_topics
}
sentiment_counts = df['sentiment_label'].value_counts()
if sentiment_counts.get('Positive', 0) > sentiment_counts.get('Negative', 0):
sentiment = "Overall sentiment is positive."
elif sentiment_counts.get('Negative', 0) > sentiment_counts.get('Positive', 0):
sentiment = "Overall sentiment is negative."
else:
sentiment = "Overall sentiment is mixed."
def extract_relevant_topics(topics):
if isinstance(topics, str):
topics = ast.literal_eval(topics) # convert string to list if needed
if len(topics) <= 2:
return topics
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(topics)
similarity_matrix = cosine_similarity(tfidf_matrix, tfidf_matrix)
# sum similarity scores for each topic
topic_scores = similarity_matrix.sum(axis=1)
# get top 2 highest scoring topics
top_indices = topic_scores.argsort()[-2:][::-1]
top_topics = [topics[i] for i in top_indices]
return top_topics
# ensure 'top_topics' is a list
df['top_topics'] = df['top_topics'].apply(lambda x: ast.literal_eval(x) if isinstance(x, str) else x)
# convert lists to sets for easy comparison
df['top_topics_set'] = df['top_topics'].apply(lambda x: set(x) if isinstance(x, list) else set())
# find common topics across all articles
if len(df) > 1:
common_topics = set.intersection(*df['top_topics_set'])
else:
common_topics = set() # no common topics if only one article
# extract unique topics by removing common ones
df['unique_topics'] = df['top_topics_set'].apply(lambda x: list(x - common_topics) if x else [])
# drop the temporary 'top_topics_set' column
df.drop(columns=['top_topics_set'], inplace=True)
coverage_differences = []
for _, row in df.iterrows():
if row['most_similar_article'] in df.index and row['least_similar_article'] in df.index:
most_similar = df.loc[row['most_similar_article']]
least_similar = df.loc[row['least_similar_article']]
# extract most relevant topics
most_relevant_topics = extract_relevant_topics(row['top_topics'])
least_relevant_topics = extract_relevant_topics(least_similar['top_topics'])
if most_relevant_topics and least_relevant_topics:
comparison = {
"Comparison": f"{row['title']} highlights {', '.join(row['top_topics'])}, while {most_similar['title']} discusses {', '.join(most_similar['top_topics'])}.",
"Impact": f"The article emphasizes {most_relevant_topics[0]} and {most_relevant_topics[1]}, contrasting with {least_relevant_topics[0]} and {least_relevant_topics[1]} in the least similar article."
}
coverage_differences.append(comparison)
structured_summary = {
"Company": company_name,
"Articles": [
{
"Title": row['title'],
"Summary": row['summary'],
"Sentiment": row['sentiment'],
"Topics": row['top_topics'],
"Unique Topics": row['unique_topics']
}
for _, row in df.iterrows()
],
"Comparative Sentiment Score": {
"Sentiment Distribution": df['sentiment'].value_counts().to_dict(),
},
"Topic Overlap": {
"Common Topics": list(common_topics) if common_topics else ["No common topics found"],
"Unique Topics": [
{"Title": row['title'], "Unique Topics": row['unique_topics']}
for _, row in df.iterrows()
]
},
"Final Sentiment Analysis": f"{company_name}’s latest news coverage is mostly {df['sentiment'].mode()[0].lower()}. Potential market impact expected."
}
yield {"json_summary": structured_summary}
english_news = [f"Name of Company: {company_name}"]
for i, row in df.iterrows():
article_entry = f"Article {i + 1}: "
article_entry += f"{row['title']}; "
article_entry += f"Summary: {row['summary']} This article has a {row['sentiment_label'].lower()} sentiment."
english_news.append(article_entry)
yield {"english_news_list": english_news}
translator = GoogleTranslator(source='en', target='hi') # 'hi' = Hindi
translated_news = []
for text in tqdm(english_news, desc="Translating"):
translated_news.append(translator.translate(text))
yield {"hindi_news_list": translated_news}
hindi_news = '; '.join(translated_news)
# yield {"hindi_news_text": hindi_news}
def text_to_speech(text, language='hi'):
tts = gTTS(text=text, lang=language, slow=False)
filename = "hindi_news.mp3" # save file to path
tts.save(filename)
return filename
print(df)
news_audio = text_to_speech(hindi_news)
yield {"hindi_news_audio": news_audio}
yield {"bar_chart": sentiment_bars_file}
yield {"pie_chart": sentiment_pie_file}