Spaces:
Sleeping
Sleeping
# ========================== | |
# Data Handling & Storage | |
# ========================== | |
import json | |
import ast | |
import pandas as pd | |
import numpy as np | |
# ========================== | |
# Web Scraping & Data Retrieval | |
# ========================== | |
import requests | |
import httpx | |
import feedparser | |
import concurrent.futures | |
from bs4 import BeautifulSoup | |
from googlesearch import search | |
from urllib.parse import urlparse | |
# ========================== | |
# Natural Language Processing (NLP) | |
# ========================== | |
import nltk | |
import spacy | |
import gensim | |
from nltk.corpus import stopwords | |
from nltk.tokenize import word_tokenize | |
from nltk.stem import WordNetLemmatizer | |
from gensim.models import LdaModel | |
from gensim.corpora import Dictionary | |
from transformers import pipeline | |
from deep_translator import GoogleTranslator | |
from gtts import gTTS # Text-to-speech | |
# ========================== | |
# Machine Learning & Text Analysis | |
# ========================== | |
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer, ENGLISH_STOP_WORDS | |
from sklearn.metrics.pairwise import cosine_similarity | |
from sklearn.decomposition import NMF, LatentDirichletAllocation | |
from sklearn.model_selection import RandomizedSearchCV | |
# ========================== | |
# Data Visualization | |
# ========================== | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
# ========================== | |
# Utility & Performance Optimization | |
# ========================== | |
import re | |
import os | |
import io | |
from collections import Counter | |
from tqdm import tqdm # progress bar | |
def fetch_news_data(company_name: str, article_number: int): | |
excluded_domains = ["youtube.com", "en.wikipedia.org", "m.economictimes.com", "www.prnewswire.com", "economictimes.indiatimes.com", "www.moneycontrol.com"] | |
def is_valid_news_article(url, company_name): | |
try: | |
domain = urlparse(url).netloc # extracts the domain | |
if company_name.lower() in domain.lower() or any(excluded_domain in domain for excluded_domain in excluded_domains): | |
return False | |
return True | |
except Exception: | |
return False # handle unexpected errors | |
def get_top_articles(company_name, article_number): | |
query = f"{company_name} latest news article" | |
valid_urls = [] | |
for url in search(query, num_results = article_number*2): | |
if is_valid_news_article(url, company_name): | |
valid_urls.append(url) | |
if len(valid_urls) > article_number+1: | |
break | |
return valid_urls | |
def extract_article_data(url): | |
headers = { | |
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36" | |
} | |
try: | |
response = requests.get(url, headers=headers) | |
response.raise_for_status() # handle HTTP errors | |
soup = BeautifulSoup(response.content, 'html.parser') | |
# extract title | |
title = soup.title.string.strip() if soup.title else None | |
source = url.split('/')[2] # Extract domain | |
# validate data | |
if not title: | |
return None | |
return {"title": title, "link": url, "source": source} | |
except (requests.exceptions.RequestException, AttributeError): | |
return None # skip articles with invalid data | |
def main(company_name, article_number): | |
urls = get_top_articles(company_name, article_number) | |
# extract and validate article data | |
articles_data = [extract_article_data(url) for url in urls] | |
articles_data = [article for article in articles_data if article] # remove None values | |
# create DataFrame only if valid articles exist | |
if articles_data: | |
df = pd.DataFrame(articles_data) | |
else: | |
df = pd.DataFrame(columns=["title", "link"]) # empty DataFrame if nothing was found | |
return df | |
df = main(company_name, article_number+1) | |
news_df_output = df[["title", "source"]].rename(columns={"title": "Headline", "source": "Source"}) | |
news_df_output["Source"] = news_df_output["Source"].str.replace(r"^www\.", "", regex=True).str.split('.').str[0] | |
yield {"news_df_output": news_df_output} | |
def get_article_text(url): | |
try: | |
headers = {'User-Agent': 'Mozilla/5.0'} | |
response = requests.get(url, headers=headers) | |
soup = BeautifulSoup(response.text, "html.parser") | |
# remove unwanted elements | |
for unwanted in soup.select("nav, aside, footer, header, .ad, .advertisement, .promo, .sidebar, .related-articles"): | |
unwanted.extract() | |
# try extracting from known article containers | |
article_body = soup.find(['article', 'div', 'section'], class_=['article-body', 'post-body', 'entry-content', 'main-content']) | |
if article_body: | |
paragraphs = article_body.find_all('p') | |
article_text = " ".join([p.get_text() for p in paragraphs]).strip() | |
return article_text if article_text else None # return None if empty | |
# fallback to all <p> tags | |
paragraphs = soup.find_all('p') | |
article_text = " ".join([p.get_text() for p in paragraphs]).strip() | |
return article_text if article_text else None # return None if empty | |
except Exception: | |
return None # return None in case of an error | |
df['article_text'] = df['link'].apply(get_article_text) | |
df = df.reset_index(drop=True) | |
block_patterns = [ | |
# Error messages (with variations) | |
r'Oops[!,\.]? something went wrong', | |
r'An error has occurred', | |
r'This content is not available', | |
r'Please enable JavaScript to continue', | |
r'Error loading content', | |
r'Follow Us', | |
# JavaScript patterns | |
r'var .*?;', | |
r'alert\(.*?\)', | |
r'console\.log\(.*?\)', | |
r'<script.*?</script>', | |
r'<noscript>.*?</noscript>', | |
r'<style.*?</style>', | |
# Loading or restricted content messages | |
r'Loading[\.]*', | |
r'You must be logged in to view this content', | |
r'This content is restricted', | |
r'Access denied', | |
r'Please disable your ad blocker', | |
# GDPR and cookie consent banners | |
r'This site uses cookies', | |
r'We use cookies to improve your experience', | |
r'By using this site, you agree to our use of cookies', | |
r'Accept Cookies', | |
# Stories or content teasers with any number | |
r'\d+\s*Stories', | |
# Miscellaneous | |
r'<iframe.*?</iframe>', | |
r'<meta.*?>', | |
r'<link.*?>', | |
r'Refresh the page and try again', | |
r'Click here if the page does not load', | |
r'© [0-9]{4}.*? All rights reserved', | |
r'Unauthorized access', | |
r'Terms of Service', | |
r'Privacy Policy', | |
r'<.*?>', | |
] | |
pattern = '|'.join(block_patterns) | |
df['article_text'] = df['article_text'].str.replace(pattern, '', regex=True).str.strip() | |
df['article_text'] = df['article_text'].str.replace(r'\s+', ' ', regex=True).str.strip() | |
custom_stop_words = set(ENGLISH_STOP_WORDS.union({company_name.lower(), 'company', 'ttm', 'rs'})) | |
# add numeric values (integer, decimal, comma-separated, monetary) | |
numeric_patterns = re.compile(r'\b\d+(?:[\.,]\d+)?(?:,\d+)*\b|\$\d+(?:[\.,]\d+)?') | |
numeric_matches = set(re.findall(numeric_patterns, ' '.join(df['article_text']))) | |
custom_stop_words.update(numeric_matches) | |
# remove unwanted unicode characters (like \u2018, \u2019, etc.) | |
unicode_patterns = re.compile(r'[\u2018\u2019\u2020\u2021\u2014]') # Add more if needed | |
df['article_text'] = df['article_text'].apply(lambda x: unicode_patterns.sub('', x)) | |
custom_stop_words = list(custom_stop_words) | |
summarizer = pipeline("summarization", model="google/long-t5-tglobal-base") | |
def generate_summary(text): | |
try: | |
if len(text.split()) > 50: # skip very short texts | |
summary = summarizer(text, max_length=150, min_length=50, do_sample=False)[0]['summary_text'] | |
return summary | |
else: | |
return text | |
except Exception as e: | |
print(f"Error processing text: {e}") | |
return None | |
# apply summarization to the 'article_text' column | |
df['summary'] = df['article_text'].apply(generate_summary) | |
# load a pre-trained BERT-based sentiment model from Hugging Faces | |
sentiment_pipeline = pipeline("sentiment-analysis") | |
def analyze_sentiment(text): | |
"""Analyze sentiment with a confidence-based neutral zone.""" | |
if not text.strip(): | |
return "Neutral" | |
try: | |
result = sentiment_pipeline(text)[0] | |
sentiment_label = result["label"] | |
confidence = round(result["score"], 2) | |
if confidence < 0.7: | |
return "Neutral" | |
return f"{sentiment_label.capitalize()} ({confidence})" | |
except Exception: | |
return "Error in sentiment analysis." | |
# apply sentiment analysis on the summary column | |
df['sentiment'] = df['summary'].apply(analyze_sentiment) | |
df['sentiment_label'] = df['sentiment'].str.extract(r'(Positive|Negative|Neutral)') | |
sentiment_bars = plt.figure(figsize=(7, 7)) | |
sns.countplot(x=df['sentiment_label'], palette={'Positive': 'green', 'Negative': 'red', 'Neutral': 'gray'}) | |
plt.title("Sentiment Analysis of Articles") | |
plt.xlabel("Sentiment") | |
plt.ylabel("Count") | |
# save the figure as an image file to use in gradio interface | |
sentiment_bars_file = "sentiment_bars.png" | |
sentiment_bars.savefig(sentiment_bars_file) | |
plt.close(sentiment_bars) | |
sentiment_counts = df['sentiment_label'].value_counts() | |
colors = {'Positive': 'green', 'Negative': 'red', 'Neutral': 'gray'} | |
sentiment_pie = plt.figure(figsize=(7, 7)) | |
plt.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', colors=[colors[label] for label in sentiment_counts.index]) | |
plt.title("Sentiment Distribution of Articles") | |
sentiment_pie_file = "sentiment_pie.png" | |
sentiment_pie.savefig(sentiment_pie_file) | |
plt.close(sentiment_pie) | |
df['combined_text'] = df['title'] + ' ' + df['summary'] # combine text for analysis | |
vectorizer = TfidfVectorizer(max_features=1000, stop_words=custom_stop_words) | |
tfidf = vectorizer.fit_transform(df['combined_text']) | |
n_topics = 5 # number of topics | |
nmf = NMF(n_components=n_topics, random_state=42) | |
W = nmf.fit_transform(tfidf) | |
H = nmf.components_ | |
feature_names = vectorizer.get_feature_names_out() | |
topics = [] | |
for topic_idx, topic in enumerate(H): | |
top_words = [feature_names[i] for i in topic.argsort()[-5:]][::-1] # 5 words per topic | |
topics.append(", ".join(top_words)) | |
def get_top_topics(row): | |
topic_indices = W[row].argsort()[-3:][::-1] # get top 3 topics | |
return [topics[i] for i in topic_indices] | |
df['top_topics'] = [get_top_topics(i) for i in range(len(df))] | |
df['dominant_topic'] = W.argmax(axis=1) | |
df['topic_distribution'] = W.tolist() | |
similarity_matrix = cosine_similarity(W) | |
df['similarity_scores'] = similarity_matrix.mean(axis=1) | |
df['most_similar_article'] = similarity_matrix.argsort(axis=1)[:, -2] # second highest value | |
df['least_similar_article'] = similarity_matrix.argsort(axis=1)[:, 0] # lowest value | |
similarity_heatmap = plt.figure(figsize=(10, 8)) | |
sns.heatmap(similarity_matrix, annot=True, fmt=".2f", cmap="coolwarm", xticklabels=False, yticklabels=False) | |
plt.title("Comparative Analysis of News Coverage Across Articles") | |
comparisons = [] | |
for i in range(len(df)): | |
# find most similar and least similar articles | |
similar_idx = similarity_matrix[i].argsort()[-2] # most similar (excluding itself) | |
least_similar_idx = similarity_matrix[i].argsort()[0] # least similar | |
# build comparison text | |
comparison = { | |
"Most Similar": f"Article {i + 1} focuses on '{topics[df['dominant_topic'][i]]}', similar to Article {similar_idx + 1} which also discusses '{topics[df['dominant_topic'][similar_idx]]}'.", | |
"Least Similar": f"Article {i + 1} focuses on '{topics[df['dominant_topic'][i]]}', contrasting with Article {least_similar_idx + 1} which discusses '{topics[df['dominant_topic'][least_similar_idx]]}'." | |
} | |
comparisons.append(comparison) | |
df['coverage_comparison'] = comparisons | |
# find common and unique topics | |
all_topics = df['dominant_topic'].tolist() | |
topic_counter = Counter(all_topics) | |
common_topics = [topics[i] for i, count in topic_counter.items() if count > 1] | |
unique_topics = [topics[i] for i, count in topic_counter.items() if count == 1] | |
topic_overlap = { | |
"Common Topics": common_topics, | |
"Unique Topics": unique_topics | |
} | |
sentiment_counts = df['sentiment_label'].value_counts() | |
if sentiment_counts.get('Positive', 0) > sentiment_counts.get('Negative', 0): | |
sentiment = "Overall sentiment is positive." | |
elif sentiment_counts.get('Negative', 0) > sentiment_counts.get('Positive', 0): | |
sentiment = "Overall sentiment is negative." | |
else: | |
sentiment = "Overall sentiment is mixed." | |
def extract_relevant_topics(topics): | |
if isinstance(topics, str): | |
topics = ast.literal_eval(topics) # convert string to list if needed | |
if len(topics) <= 2: | |
return topics | |
vectorizer = TfidfVectorizer() | |
tfidf_matrix = vectorizer.fit_transform(topics) | |
similarity_matrix = cosine_similarity(tfidf_matrix, tfidf_matrix) | |
# sum similarity scores for each topic | |
topic_scores = similarity_matrix.sum(axis=1) | |
# get top 2 highest scoring topics | |
top_indices = topic_scores.argsort()[-2:][::-1] | |
top_topics = [topics[i] for i in top_indices] | |
return top_topics | |
# ensure 'top_topics' is a list | |
df['top_topics'] = df['top_topics'].apply(lambda x: ast.literal_eval(x) if isinstance(x, str) else x) | |
# convert lists to sets for easy comparison | |
df['top_topics_set'] = df['top_topics'].apply(lambda x: set(x) if isinstance(x, list) else set()) | |
# find common topics across all articles | |
if len(df) > 1: | |
common_topics = set.intersection(*df['top_topics_set']) | |
else: | |
common_topics = set() # no common topics if only one article | |
# extract unique topics by removing common ones | |
df['unique_topics'] = df['top_topics_set'].apply(lambda x: list(x - common_topics) if x else []) | |
# drop the temporary 'top_topics_set' column | |
df.drop(columns=['top_topics_set'], inplace=True) | |
coverage_differences = [] | |
for _, row in df.iterrows(): | |
if row['most_similar_article'] in df.index and row['least_similar_article'] in df.index: | |
most_similar = df.loc[row['most_similar_article']] | |
least_similar = df.loc[row['least_similar_article']] | |
# extract most relevant topics | |
most_relevant_topics = extract_relevant_topics(row['top_topics']) | |
least_relevant_topics = extract_relevant_topics(least_similar['top_topics']) | |
if most_relevant_topics and least_relevant_topics: | |
comparison = { | |
"Comparison": f"{row['title']} highlights {', '.join(row['top_topics'])}, while {most_similar['title']} discusses {', '.join(most_similar['top_topics'])}.", | |
"Impact": f"The article emphasizes {most_relevant_topics[0]} and {most_relevant_topics[1]}, contrasting with {least_relevant_topics[0]} and {least_relevant_topics[1]} in the least similar article." | |
} | |
coverage_differences.append(comparison) | |
structured_summary = { | |
"Company": company_name, | |
"Articles": [ | |
{ | |
"Title": row['title'], | |
"Summary": row['summary'], | |
"Sentiment": row['sentiment'], | |
"Topics": row['top_topics'], | |
"Unique Topics": row['unique_topics'] | |
} | |
for _, row in df.iterrows() | |
], | |
"Comparative Sentiment Score": { | |
"Sentiment Distribution": df['sentiment'].value_counts().to_dict(), | |
}, | |
"Topic Overlap": { | |
"Common Topics": list(common_topics) if common_topics else ["No common topics found"], | |
"Unique Topics": [ | |
{"Title": row['title'], "Unique Topics": row['unique_topics']} | |
for _, row in df.iterrows() | |
] | |
}, | |
"Final Sentiment Analysis": f"{company_name}’s latest news coverage is mostly {df['sentiment'].mode()[0].lower()}. Potential market impact expected." | |
} | |
yield {"json_summary": structured_summary} | |
english_news = [f"Name of Company: {company_name}"] | |
for i, row in df.iterrows(): | |
article_entry = f"Article {i + 1}: " | |
article_entry += f"{row['title']}; " | |
article_entry += f"Summary: {row['summary']} This article has a {row['sentiment_label'].lower()} sentiment." | |
english_news.append(article_entry) | |
yield {"english_news_list": english_news} | |
translator = GoogleTranslator(source='en', target='hi') # 'hi' = Hindi | |
translated_news = [] | |
for text in tqdm(english_news, desc="Translating"): | |
translated_news.append(translator.translate(text)) | |
yield {"hindi_news_list": translated_news} | |
hindi_news = '; '.join(translated_news) | |
# yield {"hindi_news_text": hindi_news} | |
def text_to_speech(text, language='hi'): | |
tts = gTTS(text=text, lang=language, slow=False) | |
filename = "hindi_news.mp3" # save file to path | |
tts.save(filename) | |
return filename | |
print(df) | |
news_audio = text_to_speech(hindi_news) | |
yield {"hindi_news_audio": news_audio} | |
yield {"bar_chart": sentiment_bars_file} | |
yield {"pie_chart": sentiment_pie_file} |