import os | |
# os.system('chmod 777 /tmp') | |
# os.system('apt-get update -y') | |
# os.system('apt-get install tesseract-ocr -y') | |
# os.system('pip install -q pytesseract') | |
from base64 import b64decode, b64encode | |
from io import BytesIO | |
import tesserocr | |
from fastapi import FastAPI, File, Form | |
from PIL import Image | |
from transformers import pipeline | |
#import streamlit as st | |
# pytesseract.pytesseract.tesseract_cmd = r’./Tesseract-OCR/tesseract.exe’ | |
choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1] | |
description = """ | |
## DocQA with 🤗 transformers, FastAPI, and Docker | |
This app shows how to do Document Question Answering using | |
FastAPI in a Docker Space 🚀 | |
Check out the docs for the `/predict` endpoint below to try it out! | |
""" | |
# NOTE - we configure docs_url to serve the interactive Docs at the root path | |
# of the app. This way, we can use the docs as a landing page for the app on Spaces. | |
app = FastAPI() | |
pipe = pipeline("document-question-answering", model="impira/layoutlm-document-qa") | |
#st.write(output) | |
# @app.post("/predict") | |
# def predict(image_file: bytes = File(...), question: str = Form(...)): | |
# """ | |
# Using the document-question-answering pipeline from `transformers`, take | |
# a given input document (image) and a question about it, and return the | |
# predicted answer. The model used is available on the hub at: | |
# [`impira/layoutlm-document-qa`](https://huggingface.co/impira/layoutlm-document-qa). | |
# """ | |
# image = Image.open(BytesIO(image_file)) | |
# output = pipe(image, question) | |
# return output | |
def root(): | |
return {"Hello":"world"} | |
def read_root(): | |
image = 'https://templates.invoicehome.com/invoice-template-us-neat-750px.png' | |
question = "What is the invoice number?" | |
output = pipe(image, question) | |
return output |