Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
from typing import Dict, Optional, Tuple | |
import numpy as np | |
import torch | |
from perspective2d import PerspectiveFields | |
from . import logger | |
from .data.image import pad_image, rectify_image, resize_image | |
from .evaluation.run import pretrained_models, resolve_checkpoint_path | |
from .models.orienternet import OrienterNet | |
from .models.voting import argmax_xyr, fuse_gps | |
from .osm.raster import Canvas | |
from .utils.exif import EXIF | |
from .utils.geo import BoundaryBox, Projection | |
from .utils.io import read_image | |
from .utils.wrappers import Camera | |
try: | |
from geopy.geocoders import Nominatim | |
geolocator = Nominatim(user_agent="orienternet") | |
except ImportError: | |
geolocator = None | |
class ImageCalibrator(PerspectiveFields): | |
def __init__(self, version: str = "Paramnet-360Cities-edina-centered"): | |
super().__init__(version) | |
self.eval() | |
def run( | |
self, | |
image_rgb: np.ndarray, | |
focal_length: Optional[float] = None, | |
exif: Optional[EXIF] = None, | |
) -> Tuple[Tuple[float, float], Camera]: | |
h, w, *_ = image_rgb.shape | |
if focal_length is None and exif is not None: | |
_, focal_ratio = exif.extract_focal() | |
if focal_ratio != 0: | |
focal_length = focal_ratio * max(h, w) | |
calib = self.inference(img_bgr=image_rgb[..., ::-1]) | |
roll_pitch = (calib["pred_roll"].item(), calib["pred_pitch"].item()) | |
if focal_length is None: | |
vfov = calib["pred_vfov"].item() | |
focal_length = h / 2 / np.tan(np.deg2rad(vfov) / 2) | |
camera = Camera.from_dict( | |
{ | |
"model": "SIMPLE_PINHOLE", | |
"width": w, | |
"height": h, | |
"params": [focal_length, w / 2 + 0.5, h / 2 + 0.5], | |
} | |
) | |
return roll_pitch, camera | |
def parse_location_prior( | |
exif: EXIF, | |
prior_latlon: Optional[Tuple[float, float]] = None, | |
prior_address: Optional[str] = None, | |
) -> np.ndarray: | |
latlon = None | |
if prior_latlon is not None: | |
latlon = prior_latlon | |
logger.info("Using prior latlon %s.", prior_latlon) | |
elif prior_address is not None: | |
if geolocator is None: | |
raise ValueError("geocoding unavailable, install geopy.") | |
location = geolocator.geocode(prior_address) | |
if location is None: | |
logger.info("Could not find any location for address '%s.'", prior_address) | |
else: | |
logger.info("Using prior address '%s'", location.address) | |
latlon = (location.latitude, location.longitude) | |
if latlon is None: | |
geo = exif.extract_geo() | |
if geo: | |
alt = geo.get("altitude", 0) # read if available | |
latlon = (geo["latitude"], geo["longitude"], alt) | |
logger.info("Using prior location from EXIF.") | |
else: | |
raise ValueError( | |
"No location prior given or found in the image EXIF metadata: " | |
"maybe provide the name of a street, building or neighborhood?" | |
) | |
return np.array(latlon) | |
class Demo: | |
def __init__( | |
self, | |
experiment_or_path: Optional[str] = "OrienterNet_MGL", | |
device=None, | |
**kwargs | |
): | |
if experiment_or_path in pretrained_models: | |
experiment_or_path, _ = pretrained_models[experiment_or_path] | |
path = resolve_checkpoint_path(experiment_or_path) | |
ckpt = torch.load(path, map_location=(lambda storage, loc: storage)) | |
config = ckpt["hyper_parameters"] | |
config.model.update(kwargs) | |
config.model.image_encoder.backbone.pretrained = False | |
model = OrienterNet(config.model).eval() | |
state = {k[len("model.") :]: v for k, v in ckpt["state_dict"].items()} | |
model.load_state_dict(state, strict=True) | |
if device is None: | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.model = model.to(device) | |
self.calibrator = ImageCalibrator().to(device) | |
self.config = config | |
self.device = device | |
def read_input_image( | |
self, | |
image_path: str, | |
prior_latlon: Optional[Tuple[float, float]] = None, | |
prior_address: Optional[str] = None, | |
focal_length: Optional[float] = None, | |
tile_size_meters: int = 64, | |
) -> Tuple[np.ndarray, Camera, Tuple[str, str], Projection, BoundaryBox]: | |
image = read_image(image_path) | |
with open(image_path, "rb") as fid: | |
exif = EXIF(fid, lambda: image.shape[:2]) | |
gravity, camera = self.calibrator.run(image, focal_length, exif) | |
logger.info("Using (roll, pitch) %s.", gravity) | |
latlon = parse_location_prior(exif, prior_latlon, prior_address) | |
proj = Projection(*latlon) | |
center = proj.project(latlon) | |
bbox = BoundaryBox(center, center) + tile_size_meters | |
return image, camera, gravity, proj, bbox | |
def prepare_data( | |
self, | |
image: np.ndarray, | |
camera: Camera, | |
canvas: Canvas, | |
gravity: Optional[Tuple[float]] = None, | |
) -> Dict[str, torch.Tensor]: | |
assert image.shape[:2][::-1] == tuple(camera.size.tolist()) | |
target_focal_length = self.config.data.resize_image / 2 | |
factor = target_focal_length / camera.f | |
size = (camera.size * factor).round().int() | |
image = torch.from_numpy(image).permute(2, 0, 1).float().div_(255) | |
valid = None | |
if gravity is not None: | |
roll, pitch = gravity | |
image, valid = rectify_image( | |
image, | |
camera.float(), | |
roll=-roll, | |
pitch=-pitch, | |
) | |
image, _, camera, *maybe_valid = resize_image( | |
image, size.tolist(), camera=camera, valid=valid | |
) | |
valid = None if valid is None else maybe_valid | |
max_stride = max(self.model.image_encoder.layer_strides) | |
size = (torch.ceil(size / max_stride) * max_stride).int() | |
image, valid, camera = pad_image( | |
image, size.tolist(), camera, crop_and_center=True | |
) | |
return { | |
"image": image, | |
"map": torch.from_numpy(canvas.raster).long(), | |
"camera": camera.float(), | |
"valid": valid, | |
} | |
def localize(self, image: np.ndarray, camera: Camera, canvas: Canvas, **kwargs): | |
data = self.prepare_data(image, camera, canvas, **kwargs) | |
data_ = {k: v.to(self.device)[None] for k, v in data.items()} | |
with torch.no_grad(): | |
pred = self.model(data_) | |
xy_gps = canvas.bbox.center | |
uv_gps = torch.from_numpy(canvas.to_uv(xy_gps)) | |
lp_xyr = pred["log_probs"].squeeze(0) | |
tile_size = canvas.bbox.size.min() / 2 | |
sigma = tile_size - 20 # 20 meters margin | |
lp_xyr = fuse_gps( | |
lp_xyr, | |
uv_gps.to(lp_xyr), | |
self.config.model.pixel_per_meter, | |
sigma=sigma, | |
) | |
xyr = argmax_xyr(lp_xyr).cpu() | |
prob = lp_xyr.exp().cpu() | |
neural_map = pred["map"]["map_features"][0].squeeze(0).cpu() | |
return xyr[:2], xyr[2], prob, neural_map, data["image"] | |