OrienterNet / maploc /train.py
Paul-Edouard Sarlin
Code formatting (#47)
b0cf684 unverified
raw
history blame
6.96 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
import os.path as osp
from pathlib import Path
from typing import Optional
import hydra
import pytorch_lightning as pl
import torch
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.utilities import rank_zero_only
from . import EXPERIMENTS_PATH, logger, pl_logger
from .data import modules as data_modules
from .module import GenericModule
class CleanProgressBar(pl.callbacks.TQDMProgressBar):
def get_metrics(self, trainer, model):
items = super().get_metrics(trainer, model)
items.pop("v_num", None) # don't show the version number
items.pop("loss", None)
return items
class SeedingCallback(pl.callbacks.Callback):
def on_epoch_start_(self, trainer, module):
seed = module.cfg.experiment.seed
is_overfit = module.cfg.training.trainer.get("overfit_batches", 0) > 0
if trainer.training and not is_overfit:
seed = seed + trainer.current_epoch
# Temporarily disable the logging (does not seem to work?)
pl_logger.disabled = True
try:
pl.seed_everything(seed, workers=True)
finally:
pl_logger.disabled = False
def on_train_epoch_start(self, *args, **kwargs):
self.on_epoch_start_(*args, **kwargs)
def on_validation_epoch_start(self, *args, **kwargs):
self.on_epoch_start_(*args, **kwargs)
def on_test_epoch_start(self, *args, **kwargs):
self.on_epoch_start_(*args, **kwargs)
class ConsoleLogger(pl.callbacks.Callback):
@rank_zero_only
def on_train_epoch_start(self, trainer, module):
logger.info(
"New training epoch %d for experiment '%s'.",
module.current_epoch,
module.cfg.experiment.name,
)
@rank_zero_only
def on_validation_epoch_end(self, trainer, module):
results = {
**dict(module.metrics_val.items()),
**dict(module.losses_val.items()),
}
results = [f"{k} {v.compute():.3E}" for k, v in results.items()]
logger.info(f'[Validation] {{{", ".join(results)}}}')
def find_last_checkpoint_path(experiment_dir):
cls = pl.callbacks.ModelCheckpoint
path = osp.join(experiment_dir, cls.CHECKPOINT_NAME_LAST + cls.FILE_EXTENSION)
if osp.exists(path):
return path
else:
return None
def prepare_experiment_dir(experiment_dir, cfg, rank):
config_path = osp.join(experiment_dir, "config.yaml")
last_checkpoint_path = find_last_checkpoint_path(experiment_dir)
if last_checkpoint_path is not None:
if rank == 0:
logger.info(
"Resuming the training from checkpoint %s", last_checkpoint_path
)
if osp.exists(config_path):
with open(config_path, "r") as fp:
cfg_prev = OmegaConf.create(fp.read())
compare_keys = ["experiment", "data", "model", "training"]
if OmegaConf.masked_copy(cfg, compare_keys) != OmegaConf.masked_copy(
cfg_prev, compare_keys
):
raise ValueError(
"Attempting to resume training with a different config: "
f"{OmegaConf.masked_copy(cfg, compare_keys)} vs "
f"{OmegaConf.masked_copy(cfg_prev, compare_keys)}"
)
if rank == 0:
Path(experiment_dir).mkdir(exist_ok=True, parents=True)
with open(config_path, "w") as fp:
OmegaConf.save(cfg, fp)
return last_checkpoint_path
def train(cfg: DictConfig, job_id: Optional[int] = None):
torch.set_float32_matmul_precision("medium")
OmegaConf.resolve(cfg)
rank = rank_zero_only.rank
if rank == 0:
logger.info("Starting training with config:\n%s", OmegaConf.to_yaml(cfg))
if cfg.experiment.gpus in (None, 0):
logger.warning("Will train on CPU...")
cfg.experiment.gpus = 0
elif not torch.cuda.is_available():
raise ValueError("Requested GPU but no NVIDIA drivers found.")
pl.seed_everything(cfg.experiment.seed, workers=True)
init_checkpoint_path = cfg.training.get("finetune_from_checkpoint")
if init_checkpoint_path is not None:
logger.info("Initializing the model from checkpoint %s.", init_checkpoint_path)
model = GenericModule.load_from_checkpoint(
Path(init_checkpoint_path), strict=True, find_best=False, cfg=cfg
)
else:
model = GenericModule(cfg)
if rank == 0:
logger.info("Network:\n%s", model.model)
experiment_dir = osp.join(EXPERIMENTS_PATH, cfg.experiment.name)
last_checkpoint_path = prepare_experiment_dir(experiment_dir, cfg, rank)
checkpointing_epoch = pl.callbacks.ModelCheckpoint(
dirpath=experiment_dir,
filename="checkpoint-{epoch:02d}",
save_last=True,
every_n_epochs=1,
save_on_train_epoch_end=True,
verbose=True,
**cfg.training.checkpointing,
)
checkpointing_step = pl.callbacks.ModelCheckpoint(
dirpath=experiment_dir,
filename="checkpoint-{step}",
save_last=True,
every_n_train_steps=20000,
verbose=True,
**cfg.training.checkpointing,
)
checkpointing_step.CHECKPOINT_NAME_LAST = "last-step"
strategy = None
if cfg.experiment.gpus > 1:
strategy = pl.strategies.DDPStrategy(find_unused_parameters=False)
for split in ["train", "val"]:
cfg.data["loading"][split].batch_size = (
cfg.data["loading"][split].batch_size // cfg.experiment.gpus
)
cfg.data["loading"][split].num_workers = int(
(cfg.data["loading"][split].num_workers + cfg.experiment.gpus - 1)
/ cfg.experiment.gpus
)
data = data_modules[cfg.data.get("name", "mapillary")](cfg.data)
tb_args = {"name": cfg.experiment.name, "version": ""}
tb = pl.loggers.TensorBoardLogger(EXPERIMENTS_PATH, **tb_args)
callbacks = [
checkpointing_epoch,
checkpointing_step,
pl.callbacks.LearningRateMonitor(),
SeedingCallback(),
CleanProgressBar(),
ConsoleLogger(),
]
if cfg.experiment.gpus > 0:
callbacks.append(pl.callbacks.DeviceStatsMonitor())
trainer = pl.Trainer(
default_root_dir=experiment_dir,
detect_anomaly=False,
enable_model_summary=False,
sync_batchnorm=True,
enable_checkpointing=True,
logger=tb,
callbacks=callbacks,
strategy=strategy,
check_val_every_n_epoch=1,
accelerator="gpu",
num_nodes=1,
**cfg.training.trainer,
)
trainer.fit(model, data, ckpt_path=last_checkpoint_path)
@hydra.main(
config_path=osp.join(osp.dirname(__file__), "conf"), config_name="orienternet"
)
def main(cfg: DictConfig) -> None:
train(cfg)
if __name__ == "__main__":
main()