Spaces:
Sleeping
Sleeping
File size: 15,022 Bytes
5f773d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
# Description: Pinecone Serverless Class for Resonate
# Reference: https://www.pinecone.io/docs/
import datetime
import uuid
import json
import os
import time
import pandas as pd
from dotenv import load_dotenv
from langchain_openai import OpenAIEmbeddings
from pinecone import Pinecone, ServerlessSpec
def load_json_config(json_file_path="./config/config.json"):
with open(json_file_path, "r") as file:
data = json.load(file)
return data
class PineconeServerless:
def __init__(self) -> None:
print("Pinecone Serverless Initializing")
json_config = load_json_config()
#load_dotenv("./config/.env")
self.PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
self.OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
if self.PINECONE_API_KEY is not None:
self.pinecone = Pinecone(api_key=self.PINECONE_API_KEY)
self._init_config(json_config)
self.meeting_title = None
self.base_data_path = "./data/jsonMetaDataFiles/"
self.master_json_file = f"{self.base_data_path}{self.master_json_filename}.json"
self._create_master_json()
self._create_index()
self.response = None
print("Pinecone Serverless Initialized")
def _init_config(self, json_config) -> None:
for key, value in json_config.items():
setattr(self, key.lower(), value)
def check_index_already_exists(self) -> bool:
return self.pinecone_index_name in self.pinecone.list_indexes()
def _get_vector_embedder(self):
if self.embedding_provider == "OpenAI":
return OpenAIEmbeddings(model=self.embedding_model_name)
else:
raise ValueError("Invalid Embedding Model")
def _get_index(self):
return self.pinecone.Index(self.pinecone_index_name)
def _create_index(self) -> None:
'''
Creates a new index in Pinecone if it does not exist
'''
pinecone_indexes_list = [
index.get("name")
for index in self.pinecone.list_indexes().get("indexes", [])]
if self.pinecone_index_name not in pinecone_indexes_list:
try:
self.pinecone.create_index(
name=self.pinecone_index_name,
metric=self.pinecone_metric,
dimension=self.pinecone_vector_dimension,
spec=ServerlessSpec(
cloud=self.pinecone_cloud_provider,
region=self.pinecone_region,
# pod_type="p1.x1", # Future use
),
)
while not self.pinecone.describe_index(self.pinecone_index_name).status["ready"]:
time.sleep(5)
except Exception as e:
print("Index creation failed: ", e)
def describe_index_stats(self) -> dict:
try:
index = self._get_index()
return index.describe_index_stats()
except Exception as e:
print("Index does not exist: ", e)
return {}
def _delete_index(self) -> None:
try:
self.pinecone.delete_index(self.pinecone_index_name)
except Exception as e:
print("Index does not exist: ", e)
def _create_master_json(self) -> None:
'''
Check if the master json file exists, if not, create it
'''
os.makedirs(os.path.dirname(self.base_data_path), exist_ok=True)
if not os.path.exists(self.master_json_file):
with open(self.master_json_file, "w") as file:
data = {
"index": self.pinecone_index_name,
"namespace": self.pinecone_namespace,
"last_conversation_no": 0,
"meeting_uuids": [],
"meetings": [],
}
with open(self.master_json_file, "w") as f:
json.dump(data, f, indent=4)
print(f"Created {self.master_json_file}")
def _update_master_json(
self,
meeting_uuid: str,
meeting_title: str,
last_conversation_no: int,
meeting_video_file: bool,
time_stamp: str,
) -> dict:
'''
Updates the master json file with the new meeting details
'''
with open(self.master_json_file, "r+") as f:
data = json.load(f)
data["meeting_uuids"] = list(set(data["meeting_uuids"] + [meeting_uuid]))
data["last_conversation_no"] = last_conversation_no
data["meetings"].append(
{
"meeting_uuid": meeting_uuid,
"meeting_title": meeting_title,
"meeting_date": time_stamp,
"meeting_video_file": meeting_video_file,
}
)
return data
def _get_meeting_members(self, transcript: pd.DataFrame) -> list[str]:
return list(transcript["speaker_label"].unique())
def _create_new_meeting_json(
self,
meeting_uuid: str,
meeting_title: str,
last_conversation_no: int,
meeting_members: list[str],
meeting_video_file: bool,
time_stamp: str,
meeting_summary: str,
) -> dict:
'''
Creates a new json file for the meeting details
'''
data = {
"index": self.pinecone_index_name,
"namespace": self.pinecone_namespace,
"meeting_title": meeting_title,
"meeting_uuid": meeting_uuid,
"meeting_date": time_stamp,
"last_conversation_no": last_conversation_no,
"meeting_video_file": meeting_video_file,
"meeting_members": meeting_members,
"meeting_summary": meeting_summary,
}
meeting_details_file = os.path.join(self.base_data_path, f"{meeting_uuid}.json")
with open(meeting_details_file, "w") as f:
json.dump(data, f, indent=4)
def _get_last_conversation_no(self) -> list[str]:
with open(self.master_json_file, "r") as f:
data = json.load(f)
return data["last_conversation_no"]
def _set_new_meeting_json(
self,
meeting_uuid: str,
meeting_title: str,
last_conversation_no: str,
meeting_members: list[str],
meeting_video_file: bool,
meeting_summary: str,
) -> dict:
'''
Updates the master json file with the new meeting details
'''
time_stamp = str(datetime.datetime.now().strftime("%Y%m%d%H%M%S"))
self._create_new_meeting_json(
meeting_uuid,
meeting_title,
last_conversation_no,
meeting_members,
meeting_video_file,
time_stamp,
meeting_summary,
)
data = self._update_master_json(
meeting_uuid,
meeting_title,
last_conversation_no,
meeting_video_file,
time_stamp,
)
with open(self.master_json_file, "w") as f:
json.dump(data, f, indent=4)
def _convert_to_hr_min_sec(self, time_in_minutes) -> str:
# Hr:Min:Sec
hours = int(time_in_minutes // 60)
minutes = int(time_in_minutes % 60)
seconds = int((time_in_minutes - int(time_in_minutes)) * 60)
return f"{hours:02d}:{minutes:02d}:{seconds:02d}"
def pinecone_upsert(
self,
transcript: pd.DataFrame,
meeting_uuid: str = "",
meeting_video_file: bool = False,
meeting_title: str = "Unnamed",
meeting_summary: str = "",
) -> None:
"""
Upserts the transcript into Pinecone
"""
print("Upserting transcript into Pinecone...")
texts = []
metadatas = []
last_conversation_no = self._get_last_conversation_no()
last_conversation_no = int(last_conversation_no)
embed = self._get_vector_embedder()
meeting_members = self._get_meeting_members(transcript)
index = self._get_index()
for _, record in transcript.iterrows():
start_time = self._convert_to_hr_min_sec(record["start_time"])
metadata = {
"speaker": record["speaker_label"],
"start_time": start_time,
"text": record["text"],
"meeting_uuid": meeting_uuid,
}
texts.append(record["text"])
metadatas.append(metadata)
if len(texts) >= self.pinecone_upsert_batch_limit:
ids = list(
map(
lambda i: str(i + 1),
range(last_conversation_no, last_conversation_no + len(texts)),
)
)
last_conversation_no += len(texts)
embeds = embed.embed_documents(texts)
try:
index.upsert(
vectors=zip(ids, embeds, metadatas),
namespace=self.pinecone_namespace,
)
except Exception as e:
print("Error upserting into Pinecone: ", e)
texts = []
metadatas = []
# Upsert the remaining texts
if len(texts) > 0:
ids = list(
map(
lambda i: str(i + 1),
range(last_conversation_no, last_conversation_no + len(texts)),
)
)
last_conversation_no += len(texts)
embeds = embed.embed_documents(texts)
try:
index.upsert(
vectors=zip(ids, embeds, metadatas),
namespace=self.pinecone_namespace,
)
except Exception as e:
print("Error upserting into Pinecone: ", e)
self._set_new_meeting_json(
meeting_uuid,
meeting_title,
last_conversation_no,
meeting_members,
meeting_video_file,
meeting_summary,
)
print("Upserted transcript into Pinecone")
def _extract_id_from_response(self, response: list) -> list[int]:
if response:
return list(int(match["id"]) for match in response["matches"])
return []
def query_pinecone(
self, query: str, in_filter: list[str] = [], complete_db_flag: bool = False
) -> list:
"""
Queries Pinecone for the given query, where in_filter is the list of meeting_uuids to filter the query
and if complete_db_flag is True, the entire database is queried
"""
# for using without clustering, complete_db_flag to True
try:
index = self._get_index()
embed = self._get_vector_embedder()
filter = None if complete_db_flag else {"meeting_uuid": {"$in": in_filter}}
self.response = index.query(
vector=embed.embed_documents([query])[0],
namespace=self.pinecone_namespace,
top_k=self.pinecone_top_k_results,
include_metadata=True,
filter=filter,
)
return self.response
except Exception as e:
print("Error querying Pinecone: ", e)
return []
def query_delta_conversations(self) -> pd.DataFrame:
"""
Queries Pinecone for the given query and returns the delta conversations (conversation window around the query result)
"""
ids = self._extract_id_from_response(self.response)
last_conversation_no = self._get_last_conversation_no()
index = self._get_index()
conversation = {}
for id in ids:
left = (
id - self.pinecone_delta_window
if id - self.pinecone_delta_window > 0
else 1
)
right = (
id + self.pinecone_delta_window
if id + self.pinecone_delta_window <= last_conversation_no
else last_conversation_no
)
window = [str(i) for i in range(left, right + 1)]
try:
# print("Fetch window: ", window)
print("Contextual Window Conversation IDs: ", window)
fetch_response = index.fetch(
ids=window, namespace=self.pinecone_namespace
)
conversation[id] = fetch_response
except Exception as e:
print("Error fetching from Pinecone for id:", id, "Error:", e)
continue
# print('conversation length: ', len(conversation))
return self._parse_fetch_conversations(conversation)
def _parse_fetch_conversations(self, conversation)-> dict:
'''
Parses the conversation dictionary and returns a grouped_dfs
'''
data_rows = []
for primary_hit_id, primary_hit_data in conversation.items():
for _, vector_data in primary_hit_data["vectors"].items():
id = vector_data["id"]
meeting_uuid = vector_data["metadata"]["meeting_uuid"]
speaker = vector_data["metadata"]["speaker"]
start_time = vector_data["metadata"]["start_time"]
text = vector_data["metadata"]["text"]
data_rows.append(
(primary_hit_id, id, meeting_uuid, speaker, start_time, text)
)
columns = ["primary_id", "id", "meeting_uuid", "speaker", "start_time", "text"]
delta_conversation_df = pd.DataFrame(data_rows, columns=columns)
delta_conversation_df = delta_conversation_df.sort_values(by=["id"])
delta_conversation_df = delta_conversation_df.drop_duplicates(subset=["id"])
# creating separate df for rows with same meeting_cluster_id
grouped_dfs = {
group_name: group.reset_index(drop=True, inplace=False)
for group_name, group in delta_conversation_df.groupby("meeting_uuid")
}
# return delta_conversation_df
return grouped_dfs
if __name__ == "__main__":
pinecone = PineconeServerless()
print(pinecone.describe_index_stats())
for i in range(1, 3):
print(i)
transcript = pd.read_csv(f"./data/transcriptFiles/healthcare_{i}.csv")
transcript.dropna(inplace=True)
pinecone.pinecone_upsert(
transcript,
meeting_uuid=str(uuid.uuid4()),
meeting_video_file=False,
meeting_title=f"Healthcare Meeting {i}",
meeting_summary=f"Healthcare Meeting Summary Meeting {i}",
)
time.sleep(5)
print(pinecone.describe_index_stats())
query = "I am one of the directors in Wappingers Central School District."
response1 = pinecone.query_pinecone(query, "", True)
print(response1)
|