File size: 1,763 Bytes
c2f522f b5d0fef 19f79d5 ec4bfe0 9fc880b c2f522f b5d0fef c2f522f b5d0fef c2f522f b5d0fef c2f522f b5d0fef c2f522f ec4bfe0 b5d0fef c2f522f b5d0fef c2f522f b5d0fef c2f522f b5d0fef c2f522f b5d0fef c2f522f b5d0fef c2f522f b5d0fef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
# Imports
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("prithivida/grammar_error_correcter_v1")
model = AutoModelForSeq2SeqLM.from_pretrained("prithivida/grammar_error_correcter_v1")
# Use GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# Grammar correction function
def correct_grammar(text):
# Tokenize input text with an increased max_length for handling larger input
inputs = tokenizer([text], return_tensors="pt", padding=True, truncation=True, max_length=1024).to(device)
# Generate corrected text with increased max_length and num_beams
outputs = model.generate(**inputs, max_length=1024, num_beams=5, early_stopping=True)
# Decode the output and return the corrected text
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return corrected_text
# Gradio interface function
def correct_grammar_interface(text):
corrected_text = correct_grammar(text)
return corrected_text
# Gradio app interface
with gr.Blocks() as grammar_app:
gr.Markdown("<h1>Grammar Correction App (up to 300 words)</h1>")
with gr.Row():
input_box = gr.Textbox(label="Input Text", placeholder="Enter text (up to 300 words)", lines=10)
output_box = gr.Textbox(label="Corrected Text", placeholder="Corrected text will appear here", lines=10)
submit_button = gr.Button("Correct Grammar")
# Bind the button click to the grammar correction function
submit_button.click(fn=correct_grammar_interface, inputs=input_box, outputs=output_box)
# Launch the app
if __name__ == "__main__":
grammar_app.launch()
|