humnifierai / app.py
Shujaat Ali
Update app.py
ea28e08 verified
raw
history blame
7.24 kB
# Import dependencies
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification, T5Tokenizer, T5ForConditionalGeneration
import torch
import nltk
import random
import string
import spacy
import subprocess # Import subprocess for downloading spaCy models
# Download NLTK data (if not already downloaded)
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet') # Download WordNet for enhanced synonym lookup
# Download spaCy model if not already installed
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Check for GPU and set the device accordingly
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load AI Detector model and tokenizer from Hugging Face (DistilBERT)
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device)
# Load SRDdev Paraphrase model and tokenizer for humanizing text
paraphrase_tokenizer = T5Tokenizer.from_pretrained("SRDdev/Paraphrase")
paraphrase_model = T5ForConditionalGeneration.from_pretrained("SRDdev/Paraphrase").to(device)
# AI detection function using DistilBERT with batch processing
def detect_ai_generated(texts):
inputs = tokenizer(texts, return_tensors="pt", truncation=True, max_length=512, padding=True).to(device)
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.softmax(outputs.logits, dim=1)[:, 1].cpu().tolist() # List of AI-generated probabilities
return probabilities
# Synonym replacement using spaCy
def replace_with_synonyms(text, probability=0.3):
doc = nlp(text)
new_text = []
for token in doc:
if random.random() < probability and token.pos_ in ("NOUN", "VERB", "ADJ", "ADV"):
synonyms = [synonym.lemma_ for synonym in token.vocab if synonym.is_lower == token.is_lower]
if synonyms:
new_word = random.choice(synonyms)
new_text.append(new_word)
else:
new_text.append(token.text)
else:
new_text.append(token.text)
return " ".join(new_text)
# Random text transformations to simulate human-like errors
def random_capitalize(word):
if word.isalpha() and random.random() < 0.1:
return word.capitalize()
return word
def random_remove_punctuation(text):
if random.random() < 0.2:
text = list(text)
indices = [i for i, c in enumerate(text) if c in string.punctuation]
if indices:
remove_indices = random.sample(indices, min(3, len(indices)))
for idx in sorted(remove_indices, reverse=True):
text.pop(idx)
return ''.join(text)
return text
def random_double_period(text):
if random.random() < 0.2:
text = text.replace('.', '..', 3)
return text
def random_double_space(text):
if random.random() < 0.2:
words = text.split()
for _ in range(min(3, len(words) - 1)):
idx = random.randint(0, len(words) - 2)
words[idx] += ' '
return ' '.join(words)
return text
def random_replace_comma_space(text, period_replace_percentage=0.33):
comma_occurrences = text.count(", ")
period_occurrences = text.count(". ")
replace_count_comma = max(1, comma_occurrences // 3)
replace_count_period = max(1, period_occurrences // 3)
comma_indices = [i for i in range(len(text)) if text.startswith(", ", i)]
period_indices = [i for i in range(len(text)) if text.startswith(". ", i)]
replace_indices_comma = random.sample(comma_indices, min(replace_count_comma, len(comma_indices)))
replace_indices_period = random.sample(period_indices, min(replace_count_period, len(period_indices)))
for idx in sorted(replace_indices_comma + replace_indices_period, reverse=True):
if text.startswith(", ", idx):
text = text[:idx] + " ," + text[idx + 2:]
if text.startswith(". ", idx):
text = text[:idx] + " ." + text[idx + 2:]
return text
def transform_paragraph(paragraph):
words = paragraph.split()
if len(words) > 12:
words = [random_capitalize(word) for word in words]
transformed_paragraph = ' '.join(words)
transformed_paragraph = random_remove_punctuation(transformed_paragraph)
transformed_paragraph = random_double_period(transformed_paragraph)
transformed_paragraph = random_double_space(transformed_paragraph)
transformed_paragraph = random_replace_comma_space(transformed_paragraph)
transformed_paragraph = replace_with_synonyms(transformed_paragraph) # Use spaCy for synonyms
else:
transformed_paragraph = paragraph
return transformed_paragraph
def transform_text(text):
paragraphs = text.split('\n')
transformed_paragraphs = [transform_paragraph(paragraph) for paragraph in paragraphs]
return '\n'.join(transformed_paragraphs)
# Humanize the AI-detected text using the SRDdev Paraphrase model with optimized parameters
def humanize_text(AI_text):
paragraphs = AI_text.split("\n")
paraphrased_paragraphs = []
for paragraph in paragraphs:
if paragraph.strip():
inputs = paraphrase_tokenizer(paragraph, return_tensors="pt", max_length=512, truncation=True).to(device)
paraphrased_ids = paraphrase_model.generate(
inputs['input_ids'],
max_length=inputs['input_ids'].shape[-1] + 20,
num_beams=2, # Reduced beam size for speed
early_stopping=True,
length_penalty=0.8, # Lower penalty to generate faster
no_repeat_ngram_size=2, # Reduced for performance
do_sample=True, # Enable sampling to add randomness
top_k=50, # Top-k sampling
top_p=0.95, # Top-p (nucleus) sampling
)
paraphrased_text = paraphrase_tokenizer.decode(paraphrased_ids[0], skip_special_tokens=True)
paraphrased_paragraphs.append(paraphrased_text)
return "\n\n".join(paraphrased_paragraphs)
# Main function to handle the overall process with batch processing
def main_function(AI_text):
sentences = nltk.sent_tokenize(AI_text)
ai_probabilities = detect_ai_generated(sentences)
ai_generated_percentage = sum([1 for prob in ai_probabilities if prob > 0.5]) / len(ai_probabilities) * 100
# Transform AI text to make it more human-like
humanized_text = humanize_text(AI_text)
humanized_text = transform_text(humanized_text) # Add randomness to simulate human errors
return f"AI-Generated Content: {ai_generated_percentage:.2f}%\n\nHumanized Text:\n{humanized_text}"
# Gradio interface definition
interface = gr.Interface(
fn=main_function,
inputs="textbox",
outputs="textbox",
title="AI Text Humanizer",
description="Enter AI-generated text and get a human-written version. This space uses models from Hugging Face directly."
)
# Launch the Gradio app
interface.launch(debug=True)