Spaces:
Sleeping
Sleeping
File size: 5,847 Bytes
062b394 04919b2 c5d2e49 04919b2 062b394 04919b2 062b394 04919b2 062b394 c5d2e49 062b394 c5d2e49 062b394 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import os
import gradio as gr
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from spellchecker import SpellChecker
from ginger import get_ginger_result # Importing the grammar correction function
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# Initialize the spell checker
spell = SpellChecker()
# Ensure necessary NLTK data is downloaded
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the SpaCy model is installed
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
res = pipeline_en(text)[0]
return res['label'], res['score']
# Function to get synonyms using NLTK WordNet
def get_synonyms_nltk(word, pos):
synsets = wordnet.synsets(word, pos=pos)
if synsets:
lemmas = synsets[0].lemmas()
return [lemma.name() for lemma in lemmas]
return []
# Function to remove redundant and meaningless words
def remove_redundant_words(text):
doc = nlp(text)
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
return ' '.join(filtered_text)
# Function to capitalize the first letter of sentences and proper nouns
def capitalize_sentences_and_nouns(text):
doc = nlp(text)
corrected_text = []
for sent in doc.sents:
sentence = []
for token in sent:
if token.i == sent.start: # First word of the sentence
sentence.append(token.text.capitalize())
elif token.pos_ == "PROPN": # Proper noun
sentence.append(token.text.capitalize())
else:
sentence.append(token.text)
corrected_text.append(' '.join(sentence))
return ' '.join(corrected_text)
# Function to force capitalization of the first letter of every sentence
def force_first_letter_capital(text):
sentences = text.split(". ") # Split by period to get each sentence
capitalized_sentences = [sentence[0].capitalize() + sentence[1:] if sentence else "" for sentence in sentences]
return ". ".join(capitalized_sentences)
# Function to correct tense errors in a sentence
def correct_tense_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
corrected_text.append(lemma)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to correct singular/plural errors
def correct_singular_plural_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "NOUN":
if token.tag_ == "NN": # Singular noun
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
corrected_text.append(token.lemma_ + 's')
else:
corrected_text.append(token.text)
elif token.tag_ == "NNS": # Plural noun
if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
corrected_text.append(token.lemma_)
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to check and correct article errors
def correct_article_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.text in ['a', 'an']:
next_token = token.nbor(1)
if token.text == "a" and next_token.text[0].lower() in "aeiou":
corrected_text.append("an")
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
corrected_text.append("a")
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to get the correct synonym while maintaining verb form
def replace_with_synonym(token):
pos = None
if token.pos_ == "VERB":
pos = wordnet.VERB
elif token.pos_ == "NOUN":
pos = wordnet.NOUN
elif token.pos_ == "ADJ":
pos = wordnet.ADJ
elif token.pos_ == "ADV":
pos = wordnet.ADV
synonyms = get_synonyms_nltk(token.text, pos)
if synonyms:
return synonyms[0]
return token.text
# Function to use Ginger API for grammar correction (NEW)
def correct_grammar_with_ginger(text):
result = get_ginger_result(text)
corrected_text = text
for suggestion in result["LightGingerTheTextResult"]:
if suggestion["Suggestions"]:
from_index = suggestion["From"]
to_index = suggestion["To"] + 1
suggested_text = suggestion["Suggestions"][0]["Text"]
corrected_text = corrected_text[:from_index] + suggested_text + corrected_text[to_index:]
return corrected_text
# Gradio interface
def process_text(text):
text = correct_article_errors(text)
text = correct_singular_plural_errors(text)
text = correct_tense_errors(text)
text = capitalize_sentences_and_nouns(text)
text = remove_redundant_words(text)
text = correct_grammar_with_ginger(text) # Add grammar correction using Ginger here
return text
iface = gr.Interface(fn=process_text, inputs="text", outputs="text")
iface.launch()
|