Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from transformers import pipeline | |
import spacy | |
import subprocess | |
import nltk | |
from nltk.corpus import wordnet | |
from spellchecker import SpellChecker | |
import re | |
from inflect import engine # For pluralization | |
# Initialize the English text classification pipeline for AI detection | |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") | |
# Initialize the spell checker | |
spell = SpellChecker() | |
inflect_engine = engine() | |
# Ensure necessary NLTK data is downloaded | |
nltk.download('wordnet') | |
nltk.download('omw-1.4') | |
# Ensure the SpaCy model is installed | |
try: | |
nlp = spacy.load("en_core_web_sm") | |
except OSError: | |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) | |
nlp = spacy.load("en_core_web_sm") | |
# Function to predict the label and score for English text (AI Detection) | |
def predict_en(text): | |
res = pipeline_en(text)[0] | |
return res['label'], res['score'] | |
# Function to get synonyms using NLTK WordNet | |
def get_synonyms_nltk(word, pos): | |
synsets = wordnet.synsets(word, pos=pos) | |
if synsets: | |
lemmas = synsets[0].lemmas() | |
return [lemma.name() for lemma in lemmas if lemma.name() != word] # Avoid original word | |
return [] | |
# Function to remove redundant and meaningless words | |
def remove_redundant_words(text): | |
doc = nlp(text) | |
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"} | |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words] | |
return ' '.join(filtered_text) | |
# Function to capitalize the first letter of sentences and proper nouns | |
def capitalize_sentences_and_nouns(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for sent in doc.sents: | |
sentence = [] | |
for token in sent: | |
if token.i == sent.start: # First word of the sentence | |
sentence.append(token.text.capitalize()) | |
elif token.pos_ == "PROPN": # Proper noun | |
sentence.append(token.text.capitalize()) | |
else: | |
sentence.append(token.text) | |
corrected_text.append(' '.join(sentence)) | |
return ' '.join(corrected_text) | |
# Function to correct tense errors in a sentence | |
def correct_tense_errors(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.pos_ == "VERB": | |
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text | |
corrected_text.append(lemma) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to correct singular/plural errors using inflect | |
def correct_singular_plural_errors(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.pos_ == "NOUN": | |
if token.tag_ == "NN": # Singular noun | |
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children): | |
corrected_text.append(inflect_engine.plural(token.lemma_)) | |
else: | |
corrected_text.append(token.text) | |
elif token.tag_ == "NNS": # Plural noun | |
if any(child.text.lower() in ['a', 'one'] for child in token.head.children): | |
corrected_text.append(inflect_engine.singular_noun(token.text) or token.text) | |
else: | |
corrected_text.append(token.text) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to check and correct article errors | |
def correct_article_errors(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.text in ['a', 'an']: | |
next_token = token.nbor(1) | |
if token.text == "a" and next_token.text[0].lower() in "aeiou": | |
corrected_text.append("an") | |
elif token.text == "an" and next_token.text[0].lower() not in "aeiou": | |
corrected_text.append("a") | |
else: | |
corrected_text.append(token.text) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to get the correct synonym while maintaining verb form | |
def replace_with_synonym(token): | |
pos = { | |
"VERB": wordnet.VERB, | |
"NOUN": wordnet.NOUN, | |
"ADJ": wordnet.ADJ, | |
"ADV": wordnet.ADV | |
}.get(token.pos_, None) | |
synonyms = get_synonyms_nltk(token.lemma_, pos) | |
if synonyms: | |
synonym = synonyms[0] | |
if token.tag_ == "VBG": # Present participle | |
synonym += 'ing' | |
elif token.tag_ in {"VBD", "VBN"}: # Past tense or past participle | |
synonym += 'ed' | |
elif token.tag_ == "VBZ": # Third-person singular present | |
synonym += 's' | |
return synonym | |
return token.text | |
# Function to check for and avoid double negatives | |
def correct_double_negatives(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.text.lower() == "not" and any(child.text.lower() == "never" for child in token.head.children): | |
corrected_text.append("always") | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to ensure subject-verb agreement | |
def ensure_subject_verb_agreement(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
corrected_text.append(token.text) | |
if token.dep_ == "nsubj" and token.head.pos_ == "VERB": | |
if token.tag_ == "NN" and token.head.tag_ != "VBZ": # Singular noun, should use singular verb | |
corrected_text[-1] = token.head.lemma_ + "s" | |
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": # Plural noun, should not use singular verb | |
corrected_text[-1] = token.head.lemma_ | |
return ' '.join(corrected_text) | |
# Function to correct spelling errors | |
def correct_spelling(text): | |
words = text.split() | |
corrected_words = [] | |
for word in words: | |
corrected_word = spell.correction(word) | |
corrected_words.append(corrected_word if corrected_word else word) # Keep original if correction is None | |
return ' '.join(corrected_words) | |
# Function to correct punctuation issues | |
def correct_punctuation(text): | |
text = re.sub(r'\s+([?.!,";:])', r'\1', text) # Remove space before punctuation | |
text = re.sub(r'([?.!,";:])\s+', r'\1 ', text) # Ensure a single space after punctuation | |
return text | |
# Function to ensure correct handling of possessive forms | |
def handle_possessives(text): | |
text = re.sub(r"\b(\w+)'s\b", r"\1's", text) # Preserve possessive forms | |
return text | |
# Function to rephrase text and replace words with their synonyms while maintaining form | |
def rephrase_with_synonyms(text): | |
doc = nlp(text) | |
rephrased_text = [] | |
for token in doc: | |
if token.pos_ == "NOUN" and token.text.lower() == "earth": | |
rephrased_text.append("Earth") | |
continue | |
pos_tag = { | |
"NOUN": wordnet.NOUN, | |
"VERB": wordnet.VERB, | |
"ADJ": wordnet.ADJ, | |
"ADV": wordnet.ADV | |
}.get(token.pos_, None) | |
if pos_tag: | |
synonyms = get_synonyms_nltk(token.lemma_, pos_tag) | |
if synonyms: | |
synonym = synonyms[0] # Just using the first synonym for simplicity | |
if token.pos_ == "VERB": | |
if token.tag_ == "VBG": # Present participle | |
synonym += 'ing' | |
elif token.tag_ in {"VBD", "VBN"}: # Past tense or past participle | |
synonym += 'ed' | |
elif token.tag_ == "VBZ": # Third-person singular present | |
synonym += 's' | |
rephrased_text.append(synonym) | |
else: | |
rephrased_text.append(token.text) | |
else: | |
rephrased_text.append(token.text) | |
return ' '.join(rephrased_text) | |
# Function to paraphrase and correct grammar with enhanced accuracy | |
def paraphrase_and_correct(text): | |
# Remove meaningless or redundant words first | |
cleaned_text = remove_redundant_words(text) | |
# Capitalize sentences and nouns | |
paraphrased_text = capitalize_sentences_and_nouns(cleaned_text) | |
# Correct tense and singular/plural errors | |
paraphrased_text = correct_tense_errors(paraphrased_text) | |
paraphrased_text = correct_singular_plural_errors(paraphrased_text) | |
paraphrased_text = correct_article_errors(paraphrased_text) | |
# Correct spelling errors | |
paraphrased_text = correct_spelling(paraphrased_text) | |
# Correct punctuation issues | |
paraphrased_text = correct_punctuation(paraphrased_text) | |
# Handle possessives | |
paraphrased_text = handle_possessives(paraphrased_text) | |
# Ensure subject-verb agreement | |
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text) | |
# Replace with synonyms | |
paraphrased_text = rephrase_with_synonyms(paraphrased_text) | |
# Correct for double negatives | |
paraphrased_text = correct_double_negatives(paraphrased_text) | |
return paraphrased_text | |
# Function to handle the user interface | |
def process_text(input_text): | |
ai_label, ai_score = predict_en(input_text) | |
ai_result = f"AI Detected: {ai_label} (Score: {ai_score:.2f})" | |
if ai_label == "HUMAN": | |
corrected_text = paraphrase_and_correct(input_text) | |
return corrected_text, ai_result | |
else: | |
return "The text seems to be AI-generated; no correction applied.", ai_result | |
# Gradio interface | |
iface = gr.Interface( | |
fn=process_text, | |
inputs=gr.Textbox(lines=10, placeholder="Enter your text here..."), | |
outputs=[gr.Textbox(label="Corrected Text"), gr.Textbox(label="AI Detection Result")], | |
title="Text Correction and AI Detection", | |
description="This app corrects grammar, spelling, and punctuation while also detecting AI-generated content." | |
) | |
# Launch the interface | |
iface.launch() | |