Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from transformers import pipeline | |
import spacy | |
import subprocess | |
import nltk | |
from nltk.corpus import wordnet | |
from spellchecker import SpellChecker | |
import language_tool_python | |
# Initialize the English text classification pipeline for AI detection | |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") | |
# Initialize the spell checker | |
spell = SpellChecker() | |
# Initialize the LanguageTool for grammar correction | |
tool = language_tool_python.LanguageTool('en-US') | |
# Ensure necessary NLTK data is downloaded | |
nltk.download('wordnet') | |
nltk.download('omw-1.4') | |
# Ensure the SpaCy model is installed | |
try: | |
nlp = spacy.load("en_core_web_sm") | |
except OSError: | |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) | |
nlp = spacy.load("en_core_web_sm") | |
# Function to predict the label and score for English text (AI Detection) | |
def predict_en(text): | |
res = pipeline_en(text)[0] | |
return res['label'], res['score'] | |
# Function to remove redundant and meaningless words | |
def remove_redundant_words(text): | |
doc = nlp(text) | |
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"} | |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words] | |
return ' '.join(filtered_text) | |
# Function to apply grammatical corrections using LanguageTool | |
def correct_grammar(text): | |
corrected_text = tool.correct(text) | |
return corrected_text | |
# Function to correct spelling errors | |
def correct_spelling(text): | |
words = text.split() | |
corrected_words = [] | |
for word in words: | |
corrected_word = spell.correction(word) | |
corrected_words.append(corrected_word if corrected_word else word) # Keep original word if no correction | |
return ' '.join(corrected_words) | |
# Function to capitalize the first letter of each sentence and proper nouns | |
def capitalize_sentences_and_nouns(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for sent in doc.sents: | |
sentence = [] | |
for token in sent: | |
if token.i == sent.start: # First word of the sentence | |
sentence.append(token.text.capitalize()) | |
elif token.pos_ == "PROPN": # Proper noun | |
sentence.append(token.text.capitalize()) | |
else: | |
sentence.append(token.text) | |
corrected_text.append(' '.join(sentence)) | |
return ' '.join(corrected_text) | |
# Function to rephrase with contextually appropriate synonyms | |
def rephrase_with_synonyms(text): | |
doc = nlp(text) | |
rephrased_text = [] | |
for token in doc: | |
pos_tag = None | |
if token.pos_ == "NOUN": | |
pos_tag = wordnet.NOUN | |
elif token.pos_ == "VERB": | |
pos_tag = wordnet.VERB | |
elif token.pos_ == "ADJ": | |
pos_tag = wordnet.ADJ | |
elif token.pos_ == "ADV": | |
pos_tag = wordnet.ADV | |
if pos_tag: | |
synonyms = wordnet.synsets(token.text, pos=pos_tag) | |
if synonyms: | |
synonym = synonyms[0].lemmas()[0].name() # Choose the first synonym | |
rephrased_text.append(synonym) | |
else: | |
rephrased_text.append(token.text) | |
else: | |
rephrased_text.append(token.text) | |
return ' '.join(rephrased_text) | |
# Comprehensive function for paraphrasing and grammar correction | |
def paraphrase_and_correct(text): | |
# Step 1: Remove meaningless or redundant words | |
cleaned_text = remove_redundant_words(text) | |
# Step 2: Capitalize sentences and proper nouns | |
paraphrased_text = capitalize_sentences_and_nouns(cleaned_text) | |
# Step 3: Correct grammar using LanguageTool | |
paraphrased_text = correct_grammar(paraphrased_text) | |
# Step 4: Rephrase with contextually appropriate synonyms | |
paraphrased_text = rephrase_with_synonyms(paraphrased_text) | |
# Step 5: Correct spelling errors | |
paraphrased_text = correct_spelling(paraphrased_text) | |
# Step 6: Correct any remaining grammar issues after rephrasing | |
paraphrased_text = correct_grammar(paraphrased_text) | |
return paraphrased_text | |
# Gradio app setup with two tabs | |
with gr.Blocks() as demo: | |
with gr.Tab("AI Detection"): | |
t1 = gr.Textbox(lines=5, label='Text') | |
button1 = gr.Button("π€ Predict!") | |
label1 = gr.Textbox(lines=1, label='Predicted Label π') | |
score1 = gr.Textbox(lines=1, label='Prob') | |
# Connect the prediction function to the button | |
button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1]) | |
with gr.Tab("Paraphrasing & Grammar Correction"): | |
t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction') | |
button2 = gr.Button("π Paraphrase and Correct") | |
result2 = gr.Textbox(lines=5, label='Corrected Text') | |
# Connect the paraphrasing and correction function to the button | |
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2) | |
demo.launch(share=True) | |