sashtech's picture
Update app.py
a69899f verified
raw
history blame
7.25 kB
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from spellchecker import SpellChecker
import re
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# Initialize the spell checker
spell = SpellChecker()
# Ensure necessary NLTK data is downloaded
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the SpaCy model is installed
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
res = pipeline_en(text)[0]
return res['label'], res['score']
# Function to remove redundant and meaningless words
def remove_redundant_words(text):
doc = nlp(text)
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
return ' '.join(filtered_text)
# Function to fix spacing before punctuation
def fix_punctuation_spacing(text):
# Split the text into words and punctuation
words = text.split(' ')
cleaned_words = []
punctuation_marks = {',', '.', "'", '!', '?', ':'}
for word in words:
if cleaned_words and word and word[0] in punctuation_marks:
cleaned_words[-1] += word
else:
cleaned_words.append(word)
return ' '.join(cleaned_words).replace(' ,', ',').replace(' .', '.').replace(" '", "'") \
.replace(' !', '!').replace(' ?', '?').replace(' :', ':')
# Function to fix possessives like "Earth's"
def fix_possessives(text):
text = re.sub(r'(\w)\s\'\s?s', r"\1's", text)
return text
# Function to capitalize the first letter of sentences and proper nouns
def capitalize_sentences_and_nouns(text):
doc = nlp(text)
corrected_text = []
for sent in doc.sents:
sentence = []
for token in sent:
if token.i == sent.start:
sentence.append(token.text.capitalize())
elif token.pos_ == "PROPN":
sentence.append(token.text.capitalize())
else:
sentence.append(token.text)
corrected_text.append(' '.join(sentence))
return ' '.join(corrected_text)
# Function to force capitalization of the first letter of every sentence and ensure full stops
def force_first_letter_capital(text):
sentences = re.split(r'(?<=\w[.!?])\s+', text)
capitalized_sentences = []
for sentence in sentences:
if sentence:
capitalized_sentence = sentence[0].capitalize() + sentence[1:]
if not re.search(r'[.!?]$', capitalized_sentence):
capitalized_sentence += '.'
capitalized_sentences.append(capitalized_sentence)
return " ".join(capitalized_sentences)
# Function to correct tense errors in a sentence
def correct_tense_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
corrected_text.append(lemma)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to check and correct article errors
def correct_article_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.text in ['a', 'an']:
next_token = token.nbor(1)
if token.text == "a" and next_token.text[0].lower() in "aeiou":
corrected_text.append("an")
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
corrected_text.append("a")
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to ensure subject-verb agreement
def ensure_subject_verb_agreement(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
if token.tag_ == "NN" and token.head.tag_ != "VBZ":
corrected_text.append(token.head.lemma_ + "s")
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ":
corrected_text.append(token.head.lemma_)
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to correct spelling errors
def correct_spelling(text):
words = text.split()
corrected_words = []
for word in words:
corrected_word = spell.correction(word)
if corrected_word is not None:
corrected_words.append(corrected_word)
else:
corrected_words.append(word)
return ' '.join(corrected_words)
# Function to replace a word with its synonym
def replace_with_synonyms(text):
words = text.split()
replaced_words = []
for word in words:
synonyms = wordnet.synsets(word)
if synonyms:
# Take the first synonym if available
synonym = synonyms[0].lemmas()[0].name()
# Replace the word with its synonym if it's different
if synonym.lower() != word.lower():
replaced_words.append(synonym.replace('_', ' '))
else:
replaced_words.append(word)
else:
replaced_words.append(word)
return ' '.join(replaced_words)
# Main function for paraphrasing and grammar correction
def paraphrase_and_correct(text):
cleaned_text = remove_redundant_words(text)
paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
paraphrased_text = force_first_letter_capital(paraphrased_text)
paraphrased_text = correct_article_errors(paraphrased_text)
paraphrased_text = correct_tense_errors(paraphrased_text)
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
paraphrased_text = fix_possessives(paraphrased_text)
paraphrased_text = correct_spelling(paraphrased_text)
paraphrased_text = fix_punctuation_spacing(paraphrased_text)
paraphrased_text = replace_with_synonyms(paraphrased_text) # Add synonym replacement here
return paraphrased_text
# Gradio app setup
with gr.Blocks() as demo:
with gr.Tab("AI Detection"):
t1 = gr.Textbox(lines=5, label='Text')
button1 = gr.Button("πŸ€– Predict!")
label1 = gr.Textbox(lines=1, label='Predicted Label πŸŽƒ')
score1 = gr.Textbox(lines=1, label='Prob')
button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])
with gr.Tab("Paraphrasing & Grammar Correction"):
t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction')
button2 = gr.Button("πŸ”„ Paraphrase and Correct")
result2 = gr.Textbox(lines=5, label='Corrected Text')
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)
demo.launch(share=True)