File size: 4,064 Bytes
b0503ee
84669bc
b0503ee
7feda08
6ba2176
7fc55d1
 
8e09e8c
b0503ee
 
 
 
 
 
 
 
 
7fc55d1
 
6ba2176
b0503ee
6ba2176
 
 
 
 
7feda08
b0503ee
5065a5b
 
 
 
 
 
 
b0503ee
3c39506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0503ee
5065a5b
 
 
 
 
6f0ffd9
5065a5b
 
 
 
 
 
 
 
 
 
 
 
73ae45e
5065a5b
 
 
 
 
73ae45e
5065a5b
73ae45e
3c39506
 
5065a5b
73ae45e
5065a5b
b0503ee
41941cd
 
 
 
ddf9006
d3c4b21
41941cd
 
 
b0503ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5065a5b
b0503ee
 
aed9390
b0503ee
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet

# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")

# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
    res = pipeline_en(text)[0]
    return res['label'], res['score']

# Ensure necessary NLTK data is downloaded for Humanifier
nltk.download('wordnet')
nltk.download('omw-1.4')

# Ensure the SpaCy model is installed for Humanifier
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
    nlp = spacy.load("en_core_web_sm")

# Function to get synonyms using NLTK WordNet (Humanifier)
def get_synonyms_nltk(word, pos):
    synsets = wordnet.synsets(word, pos=pos)
    if synsets:
        lemmas = synsets[0].lemmas()
        return [lemma.name() for lemma in lemmas]
    return []

# Function to capitalize the first letter of sentences and proper nouns (Humanifier)
def capitalize_sentences_and_nouns(text):
    doc = nlp(text)
    corrected_text = []

    for sent in doc.sents:
        sentence = []
        for token in sent:
            if token.i == sent.start:  # First word of the sentence
                sentence.append(token.text.capitalize())
            elif token.pos_ == "PROPN":  # Proper noun
                sentence.append(token.text.capitalize())
            else:
                sentence.append(token.text)
        corrected_text.append(' '.join(sentence))

    return ' '.join(corrected_text)

# Paraphrasing function using SpaCy and NLTK (Humanifier)
def paraphrase_with_spacy_nltk(text):
    doc = nlp(text)
    paraphrased_words = []
    
    for token in doc:
        # Map SpaCy POS tags to WordNet POS tags
        pos = None
        if token.pos_ in {"NOUN"}:
            pos = wordnet.NOUN
        elif token.pos_ in {"VERB"}:
            pos = wordnet.VERB
        elif token.pos_ in {"ADJ"}:
            pos = wordnet.ADJ
        elif token.pos_ in {"ADV"}:
            pos = wordnet.ADV
        
        synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
        
        # Replace with a synonym only if it makes sense
        if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower():
            paraphrased_words.append(synonyms[0])
        else:
            paraphrased_words.append(token.text)
    
    # Join the words back into a sentence
    paraphrased_sentence = ' '.join(paraphrased_words)
    
    # Capitalize sentences and proper nouns
    corrected_text = capitalize_sentences_and_nouns(paraphrased_sentence)
    
    return corrected_text

# Combined function: Paraphrase -> Capitalization (Humanifier)
def paraphrase_and_correct(text):
    # Step 1: Paraphrase the text
    paraphrased_text = paraphrase_with_spacy_nltk(text)
    
    # Step 2: Capitalize sentences and proper nouns
    final_text = capitalize_sentences_and_nouns(paraphrased_text)
    
    return final_text

# Gradio app setup with two tabs
with gr.Blocks() as demo:
    with gr.Tab("AI Detection"):
        t1 = gr.Textbox(lines=5, label='Text')
        button1 = gr.Button("🤖 Predict!")
        label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
        score1 = gr.Textbox(lines=1, label='Prob')

        # Connect the prediction function to the button
        button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
    
    with gr.Tab("Humanifier"):
        text_input = gr.Textbox(lines=5, label="Input Text")
        paraphrase_button = gr.Button("Paraphrase & Correct")
        output_text = gr.Textbox(label="Paraphrased Text")

        # Connect the paraphrasing function to the button
        paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)

# Launch the app with both functionalities
demo.launch()