Spaces:
Running
Running
File size: 4,197 Bytes
b0503ee 84669bc b7577da 7feda08 90fff6b 7fc55d1 6d0ac04 90fff6b 7fc55d1 51568dc 6ba2176 90fff6b 6ba2176 c163eb2 6ba2176 7feda08 0c94dc9 3e83484 0c94dc9 3e83484 0c94dc9 3e83484 0c94dc9 3e83484 e00f367 0c94dc9 3e83484 f79e1dd 3e83484 f79e1dd 3e83484 0c94dc9 3e83484 90fff6b 3e83484 f79e1dd 3e83484 90fff6b 3e83484 90fff6b 3e83484 90fff6b 3e83484 90fff6b 3e83484 847e3e1 90fff6b c163eb2 90fff6b f79e1dd 90fff6b aed9390 90fff6b a39af1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
res = pipeline_en(text)[0]
return res['label'], res['score']
# Ensure necessary NLTK data is downloaded for Humanifier
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the SpaCy model is installed for Humanifier
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Function to get synonyms using NLTK WordNet and maintain original verb form
def get_synonym(word, pos_tag, original_token):
synsets = wordnet.synsets(word)
if not synsets:
return word
for synset in synsets:
if synset.pos() == pos_tag: # Match the part of speech
synonym = synset.lemmas()[0].name()
# Preserve the original verb form
if original_token.tag_ in ["VBG", "VBN"]: # Present or past participle
return spacy_token_form(synonym, original_token.tag_)
elif original_token.tag_ in ["VBZ"]: # 3rd person singular
return synonym + "s"
else:
return synonym
return word
# Function to conjugate the synonym to the correct form based on the original token's tag
def spacy_token_form(synonym, tag):
if tag == "VBG": # Gerund or present participle
return synonym + "ing" if not synonym.endswith("ing") else synonym
elif tag == "VBN": # Past participle
return synonym + "ed" if not synonym.endswith("ed") else synonym
return synonym
# Function to rephrase text and replace words with their synonyms while maintaining form
def rephrase_with_synonyms(text):
doc = nlp(text)
rephrased_text = []
for token in doc:
# Get the correct POS tag for WordNet
pos_tag = None
if token.pos_ == "NOUN":
pos_tag = wordnet.NOUN
elif token.pos_ == "VERB":
pos_tag = wordnet.VERB
elif token.pos_ == "ADJ":
pos_tag = wordnet.ADJ
elif token.pos_ == "ADV":
pos_tag = wordnet.ADV
if pos_tag:
synonym = get_synonym(token.text, pos_tag, token)
rephrased_text.append(synonym)
else:
rephrased_text.append(token.text)
return ' '.join(rephrased_text)
# Function to paraphrase and correct grammar
def paraphrase_and_correct(text):
paraphrased_text = capitalize_sentences_and_nouns(text) # Capitalize first to ensure proper noun capitalization
# Apply grammatical corrections
paraphrased_text = correct_article_errors(paraphrased_text)
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
paraphrased_text = correct_tense_errors(paraphrased_text)
# Rephrase with synonyms while maintaining grammatical forms
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
return paraphrased_text
# Gradio app setup with two tabs
with gr.Blocks() as demo:
with gr.Tab("AI Detection"):
t1 = gr.Textbox(lines=5, label='Text')
button1 = gr.Button("🤖 Predict!")
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
score1 = gr.Textbox(lines=1, label='Prob')
# Connect the prediction function to the button
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
with gr.Tab("Humanifier"):
text_input = gr.Textbox(lines=5, label="Input Text")
paraphrase_button = gr.Button("Paraphrase & Correct")
output_text = gr.Textbox(label="Paraphrased Text")
# Connect the paraphrasing function to the button
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
# Launch the app with the remaining functionalities
demo.launch(share=True)
|