File size: 6,587 Bytes
b0503ee
84669bc
b7577da
7feda08
90fff6b
7fc55d1
 
6d0ac04
90fff6b
 
 
 
 
 
 
 
 
7fc55d1
51568dc
6ba2176
90fff6b
6ba2176
 
 
c163eb2
6ba2176
7feda08
55748cc
 
 
 
 
 
 
 
 
1cf3f25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90fff6b
55748cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e83484
90fff6b
 
 
3e83484
90fff6b
 
 
55748cc
 
 
 
 
 
 
 
 
90fff6b
55748cc
847e3e1
90fff6b
c163eb2
90fff6b
 
 
 
 
 
 
 
f79e1dd
90fff6b
 
 
 
 
 
 
aed9390
90fff6b
55748cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet

# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")

# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
    res = pipeline_en(text)[0]
    return res['label'], res['score']

# Ensure necessary NLTK data is downloaded for Humanifier
nltk.download('wordnet')
nltk.download('omw-1.4')

# Ensure the SpaCy model is installed for Humanifier
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
    nlp = spacy.load("en_core_web_sm")

# Function to get synonyms using NLTK WordNet (Humanifier)
def get_synonyms_nltk(word, pos):
    synsets = wordnet.synsets(word, pos=pos)
    if synsets:
        lemmas = synsets[0].lemmas()
        return [lemma.name() for lemma in lemmas]
    return []

# Function to capitalize the first letter of sentences and proper nouns (Humanifier)
def capitalize_sentences_and_nouns(text):
    doc = nlp(text)
    corrected_text = []

    for sent in doc.sents:
        sentence = []
        for token in sent:
            if token.i == sent.start:  # First word of the sentence
                sentence.append(token.text.capitalize())
            elif token.pos_ == "PROPN":  # Proper noun
                sentence.append(token.text.capitalize())
            else:
                sentence.append(token.text)
        corrected_text.append(' '.join(sentence))

    return ' '.join(corrected_text)

# Function to correct tense errors in a sentence (Tense Correction)
def correct_tense_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        # Check for tense correction based on modal verbs
        if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
            # Replace with appropriate verb form
            lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
            corrected_text.append(lemma)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to correct singular/plural errors (Singular/Plural Correction)
def correct_singular_plural_errors(text):
    doc = nlp(text)
    corrected_text = []
    
    for token in doc:
        if token.pos_ == "NOUN":
            # Check if the noun is singular or plural
            if token.tag_ == "NN":  # Singular noun
                # Look for determiners like "many", "several", "few" to correct to plural
                if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
                    corrected_text.append(token.lemma_ + 's')
                else:
                    corrected_text.append(token.text)
            elif token.tag_ == "NNS":  # Plural noun
                # Look for determiners like "a", "one" to correct to singular
                if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
                    corrected_text.append(token.lemma_)
                else:
                    corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    
    return ' '.join(corrected_text)

# Function to check and correct article errors
def correct_article_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.text in ['a', 'an']:
            next_token = token.nbor(1)
            if token.text == "a" and next_token.text[0].lower() in "aeiou":
                corrected_text.append("an")
            elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
                corrected_text.append("a")
            else:
                corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to get the correct synonym while maintaining verb form
def replace_with_synonym(token):
    pos = None
    if token.pos_ == "VERB":
        pos = wordnet.VERB
    elif token.pos_ == "NOUN":
        pos = wordnet.NOUN
    elif token.pos_ == "ADJ":
        pos = wordnet.ADJ
    elif token.pos_ == "ADV":
        pos = wordnet.ADV
    
    synonyms = get_synonyms_nltk(token.lemma_, pos)
    
    if synonyms:
        synonym = synonyms[0]
        # Ensure the correct grammatical form is maintained
        if token.tag_ == "VBG":  # Present participle (e.g., running)
            synonym = synonym + 'ing'
        elif token.tag_ == "VBD" or token.tag_ == "VBN":  # Past tense or past participle
            synonym = synonym + 'ed'
        elif token.tag_ == "VBZ":  # Third-person singular present
            synonym = synonym + 's'
        return synonym
    return token.text

# Function to paraphrase and correct grammar
def paraphrase_and_correct(text):
    paraphrased_text = capitalize_sentences_and_nouns(text)  # Capitalize first to ensure proper noun capitalization
    
    # Apply grammatical corrections
    paraphrased_text = correct_article_errors(paraphrased_text)
    paraphrased_text = correct_singular_plural_errors(paraphrased_text)
    paraphrased_text = correct_tense_errors(paraphrased_text)

    # Replace words with synonyms while maintaining verb form
    doc = nlp(paraphrased_text)
    final_text = []
    for token in doc:
        if token.pos_ in {"VERB", "NOUN", "ADJ", "ADV"}:
            final_text.append(replace_with_synonym(token))
        else:
            final_text.append(token.text)
    
    return ' '.join(final_text)

# Gradio app setup with two tabs
with gr.Blocks() as demo:
    with gr.Tab("AI Detection"):
        t1 = gr.Textbox(lines=5, label='Text')
        button1 = gr.Button("🤖 Predict!")
        label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
        score1 = gr.Textbox(lines=1, label='Prob')

        # Connect the prediction function to the button
        button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
    
    with gr.Tab("Humanifier"):
        text_input = gr.Textbox(lines=5, label="Input Text")
        paraphrase_button = gr.Button("Paraphrase & Correct")
        output_text = gr.Textbox(label="Paraphrased Text")

        # Connect the paraphrasing function to the button
        paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)

# Launch the app with the remaining functionalities
demo.launch()